Classes 5. WolframAlpha: Linear algebra. Symbolic and numerical calculations

Solution of linear equations. Let's use the instruction *solve*, for example,

solve x + y - z = 1, x - 2y - z = -2, 3x - y + z = 3 or directly x + y = 5, x - y = -1.

Exercise 1. Solve systems of equations

a) 5x - 7y + z = 12, 2x + 3y - 4z = -1, 9x - y - 5z = 10; b) 5x - 7y + z = 12, 10x - 14y + 2z = 1, x + y - 5z = 4.

Matrix operations

Exercise 2. Calculate

a) rank matrix
$$\begin{bmatrix} 4 & 0 & 2 \\ 3 & 5 & 1 \\ 2 & -1 & 6 \end{bmatrix}$$
;
b) The inverse matrix for $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & -1 \\ 2 & -1 & 0 \end{bmatrix}$

Exercise 3. Calculate the determinant of the matrix

r 1	3	0	-1]	
2	4	-2	4	
3	1	-1	7	•
-1	3	8	3	

Exercises 4. Calculate the eigenvalues and eigenvectors of the matrix

 $\begin{bmatrix} 5 & 4 \\ 1 & -3 \end{bmatrix}.$

Limits. In order to find the limit we use instruction *limit*, for example, limit $[f(n), n \rightarrow infinity]$.

Exercises 5. Find the limit:

a) $\lim_{n \to \infty} \frac{n^2}{n^3 + 5n}$; b) $\lim_{n \to \infty} \left(1 + \frac{2}{n}\right)^n$.

For task 6 we use the limit instruction, when x tends to a: Limit $[f[x], x \rightarrow a]$.

Exercises 6. Find the limit:

a)
$$\lim_{x\to 0} \frac{2\sin x}{x}$$
;

b)
$$\lim_{x \to -1} \frac{1-x^3}{1+x^3}$$
.

Derivative

In order to find the derivative of the function f(x) we use the instruction: D[f[x]x].

To find a derivative of the n-th order, we should write $D[f[x], \{x, n\}]$.

To find a partial derivative of a function f(x, y, ..., z) we write D[f[x, y, ..., z], i], where *i* is a suitable variable. If we want to find a partial derivative with respect to order *n*, then write $D[f[x, y, ..., z], \{i, n\}]$, which means the same as above.

Exercises 7. Find the derivative: a) f'(x), where $f(x) = e^x \ln x$;

b) $f^{(v)}(x)$, where $f(x) = x^2 e^x$; c) $f'_{x}(x, y)$, where $f(x, y) = x^{2} y^{3} \cos(x - y)$; d) $f'_{y}(x, y)$, where $f(x, y) = x^{2} y^{3} \cos(x - y)$; e) f'''(x), where $f(x) = \frac{2x}{x^2 - 4}$.

Integral

To find the indefinite integral of the function f(x) you need to write: Integrate[f[x], x]. Finding the definite integral is very straightforward: Integrate $[f[x], \{x, a, b\}]$.

Exercises 8. Find the indefinite integral:

a) $\int \frac{\cos x}{x^3} dx;$

b) $\int x^2 \arccos x \, dx;$

c) $\int_{-\pi/4}^{\pi/4} \frac{x + \lg x}{x^2} dx;$

d) $\int_{2}^{\infty} \frac{\ln(x^2+2)}{x^4} dx.$

Differential equations and their systems

To find the general solution of the differential equation $F(x, y, y', ..., y^{(n)}) = 0$ we use the instruction F[x, y, y', y', y']...].

If we need to solve Cauchy's problem, we write

F[x, y, y', y', ...], y[x0] == y0, y'[x0] == y1,

If we want to solve the boundary problem, then we write the boundary conditions separated by commas in the form y[x0] == y0.

The solution of the system of differential equations is simple, just write:

 $\{f_1, f_2, ..., f_n\}$ where $f_1, f_2, ..., f_n$ are differential equations occurring in the system.

Exercises 9. Find a general or particular solution of differential equation:

a) $y''' - y'' + y' - y = \cos x;$ b) $y'' - 2y' + y = \ln x;$ c) $yy'' - 2(y')^2 - y^2 = 0;$ d) y'' + y = 0, y(0) = 1, y'(0) = 0. e) $y' + xy = x^2$, y(1) = 1; f) y''' - 3y'' + 3y' - y = 4x, y(0) = 0, y'(0) = 1, y''(0) = 0; g) $\{y' + z' = 8, y' - 4z' = 2\}.$

Exercises 10. Find the numerical solution of the equations:

a) $e^{x^2} = 3 \sin x;$

b) tg $x = x^3$ (with an accuracy of 25 significant digits).