1. Przemysław Rutka, Ryszard Smarzewski, Explicit barycentric formulae for osculatory interpolation at roots of classical orthogonal polynomials, Mathematics of Computation 86 (2017), 2409-2427.
    DOI: 10.1090/mcom/3184

  2. Paweł Karczmarek, Witold Pedrycz, Adam Kiersztyn, Przemysław Rutka, A study in facial features saliency in face recognition: an analytic hierarchy process approach, Soft Computing, electronically published on August 3, 2016.
    DOI: 10.1007/s00500-016-2305-9

  3. Adam Kiersztyn, Paweł Karczmarek, Przemysław Rutka, Witold Pedrycz, Quantitative methods for linguistic descriptors in face recognition, Recent Developments in Mathematics and Informatics, Contemporary Mathematics and Computer Science (Ed., A. Zapała), Vol. 1, Wydawnictwo KUL, Lublin 2016, pp. 123-138.

  4. Przemysław Rutka, Ryszard Smarzewski, Barycentric and mechanical properties of classical orthogonal polynomials, Recent Developments in Mathematics and Informatics, Contemporary Mathematics and Computer Science (Ed., A. Zapała), Vol. 1, Wydawnictwo KUL, Lublin 2016, pp. 167-178.

  5. Paweł Karczmarek, Adam Kiersztyn, Witold Pedrycz, Przemysław Rutka, Chain code-based local descriptor for face recognition, Proceedings of the 9th International Conference on Computer Recognition Systems CORES 2015 (Eds., R. Burduk et al.), Advances In Intelligent Systems and Computing 403, Springer 2016, pp. 307-316.
    DOI: 10.1007/978-3-319-26227-7_29

  6. Paweł Karczmarek, Adam Kiersztyn, Przemysław Rutka, Witold Pedrycz, Linguistic descriptors in face recognition: A literature survey and the perspectives of future development, SPA 2015 Signal Processing, Algorithms, Architectures, Arrangements, and Applications Conference Proceedings, 2015, pp. 98-103.
    DOI: 10.1109/SPA.2015.7365141

  7. Przemysław Rutka, Algorytmizacja problemu równowagi elektrostatycznej, Techniki informacyjne - teoria i zastosowania (Red. A. Myśliński), Tom 2 (14), Instytut Badań Systemowych Polskiej Akademii Nauk, 2012, 71-83.

  8. Przemysław Rutka, Ryszard Smarzewski, Extremal interpolatory problem of Fejér type for all classical weight functions, Electronic Transactions on Numerical Analysis 39 (2012), 46-59.
    Full text in PDF

  9. Przemysław Rutka, Ryszard Smarzewski, Complete solution of the electrostatic equilibrium problem for classical weights, Applied Mathematics and Computation 218 (2012), 6027-6037.
    DOI: 10.1016/j.amc.2011.11.084

  10. Przemysław Rutka, Ryszard Smarzewski, Multivariate inequalities of Chernoff type for classical orthogonal polynomials, Journal of Mathematical Analysis and Applications 388 (2012), 78-85.
    DOI: 10.1016/j.jmaa.2011.11.012

  11. Przemysław Rutka, An efficient orthogonal algorithmization of isoperimetric type problem in the class of closed polynomial curves, Techniki informacyjne - teoria i zastosowania (Red. J. Hołubiec), Tom 1 (13), Instytut Badań Systemowych Polskiej Akademii Nauk, 2011, 134-146.

  12. Ryszard Smarzewski, Przemysław Rutka, An isoperimetric type problem for Bézier curves of degree n, Computer Aided Geometric Design 27 (2010), 313-321.
    DOI: 10.1016/j.cagd.2010.01.002

  13. Ryszard Smarzewski, Przemysław Rutka, Inequalities of Chernoff type for finite and infinite sequences of classical orthogonal polynomials, Proceedings of the American Mathematical Society 138 (2010), 1305-1315.
    S 0002-9939 (09) 10150-8

  14. Przemysław Rutka, Ryszard Smarzewski, A weighted extremal problem for the Bézier curves of degree n with Jacobi densities, Annales UMCS Informatica AI VIII 2 (2008), 15-26.
    DOI: 10.2478/v10065-008-0021-5

Ostatnia aktualizacja: 06.05.2017 20:36