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Preliminaries

The teaching script was created from lectures of the course Linear algebra with geometry II,

which author have on KUL. That course is a continuation of the course Linear algebra with

geometry I, whose teaching script is planned to write by author. There is a lot of material, be-

cause that course covers 60 hours. First there are two topics of linear algebra and next geometry

with classification of algebraic sets of degree ≤ 2 in complex projective space. Discussed notions

are given in understanding form and often illustrated by examples. Author hopes that teaching

script will by helpfull for student.
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1. Inner product spaces

Definition. (Normed vector space) F = R (or = C), V – a vector space over F

A normed vector space is a vector space V equipped with a norm. A norm is a function

‖·‖ : V → R, which satisfies the following properties, for all v, w ∈ V and α ∈ F:

1) ‖αv‖ = |α| ‖v‖. (Homogeneity).

2) ‖v‖ ≥ 0 and ‖v‖ = 0⇔ v = 0. (Positive definiteness).

3) ‖v + w‖ ≤ ‖v‖+ ‖w‖. (Triangle inequality).

Example. Let x = (x1, . . . , xn) ∈ Rn. On the vector space Rn we define the following norms.

The 2-norm:

‖x‖2 =
df

√
x21 + . . .+ x2n.

So, for n = 1, we have ‖x‖2 = |x|.

The 1-norm:

‖x‖1 =
df

n∑
i=1

|xi| .

The ∞-norm:

‖x‖∞ =
df

max
i=1,...,n

|xi| .

Definition. (Inner product space) F = R (or = C), V – a vector space over F

An inner product space is a vector space V equipped with an inner product (a scalar product).

An inner product is a function 〈·, ·〉 : V × V → F, which satisfies the following properties, for all

v, v′, w ∈ V and α ∈ F:

1) 〈v + v′, w〉 = 〈v, w〉+ 〈v′, w〉. (Linearity in the first argument).

2) 〈αv,w〉 = α 〈v, w〉. (Homogeneity in the first argument).

3) 〈v, v〉 ≥ 0. (Positivity).

4) 〈v, w〉 = 〈w, v〉. (Conjugate symmetry).

Proposition. v, v′, w ∈ V , α ∈ F

The following hold:

5) 〈w, v + v′〉 = 〈w, v〉+ 〈w, v′〉. (Linearity in the second argument).

6) 〈v, αw〉 = α 〈v, w〉.
7) 〈v, 0〉 = 〈0, v〉 = 0.
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8) 〈v, v〉 = 0⇔ v = 0.

Proof. 5) 〈w, v + v′〉 4)
= 〈v + v′, w〉 1)

= 〈v, w〉+ 〈v′, w〉 = 〈v, w〉+ 〈v′, w〉 4)
= 〈w, v〉+ 〈w, v′〉.

6) 〈v, αw〉 4)
= 〈αw, v〉 2)

= α 〈w, v〉 = α · 〈w, v〉 4)
= α · 〈v, w〉.

7) 〈v, 0〉 = 〈v, 0 + 0〉 5)
= 〈v, 0〉+ 〈v, 0〉 ⇒ 〈v, 0〉 = 0.

Similarly, 〈0, v〉 = 0.

8) (⇒) If 〈v, v〉 = 0, then, by 7), 〈v, v〉 = 〈v, 0〉 = 〈0, v〉, whence v = 0.

(⇐) Follows by 7). �

Remark. If F = R, then property 4) says that 〈v, w〉 = 〈w, v〉. An inner product space V (F)

such that dimV <∞, is called Euclidean space if F = R, and unitary space if F = C.

Example. Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn. On the vector space Rn we define the

standard inner product by

〈x, y〉 =
df

n∑
i=1

xiyi.

More generally, if α1, . . . , αn > 0, then the following definition also gives an inner product

〈x, y〉α =
df

n∑
i=1

αixiyi.

Example. Let w = (w1, . . . , wn), z = (z1, . . . , zn) ∈ Cn. On the vector space Cn we define the

standard inner product by

〈w, z〉 =
df

n∑
i=1

wizi.

Example. Let A,B ∈ Mn×n(R). On the vector space Mn×n(R) we define the standard inner

product by

〈A,B〉 =
df

tr
(
BTA

)
.

Definition. (Orthogonal vectors) V – an inner product space, v, w ∈ V

v,w are orthogonal (or perpendicular) ⇔
df
〈v, w〉 = 0.

We write v⊥w.
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Proposition. (Cauchy-Schwarz inequality) V – an inner product space, v, w ∈ V

Then

|〈v, w〉| ≤
√
〈v, v〉

√
〈w,w〉.

Proof. If w = 0, then

|〈v, 0〉| = 0 ≤
√
〈v, v〉

√
〈0, 0〉 = 0.

Assume that w 6= 0. So, 〈w,w〉 > 0. Define

α =
〈v, w〉
〈w,w〉

.

We have

〈v, w〉 〈w, v〉 = 〈v, w〉 〈v, w〉 = |〈v, w〉|2

and

〈v − αw, v − αw〉 ≥ 0,

that is,

〈v, v〉 − α 〈w, v〉 − α 〈v, w〉+ |α|2 〈w,w〉 ≥ 0.

Hence,

〈v, v〉 − |〈v, w〉|
2

〈w,w〉
− |〈v, w〉|

2

〈w,w〉
+
|〈v, w〉|2

〈w,w〉
≥ 0.

So,

〈v, v〉 − |〈v, w〉|
2

〈w,w〉
≥ 0.

Thus,

|〈v, w〉| ≤
√
〈v, v〉

√
〈w,w〉. �

Proposition. Let 〈·, ·〉 be an inner product on a vector space V . Then the function ‖·‖ : V → R
defined by ‖v‖ =

√
〈v, v〉 is a norm on V , so an inner product space is a normed vector space.
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Proof. We easily have homogeneity and positive definiteness. Let v, w ∈ V . We prove triangle

inequality. We have

‖v + w‖2 = |〈v + w, v + w〉|

= |〈v, v + w〉+ 〈w, v + w〉|

= |〈v, v〉+ 〈w,w〉+ 〈v, w〉+ 〈w, v〉|

≤ |〈v, v〉|+ |〈w,w〉|+ |〈v, w〉|+ |〈w, v〉|

≤ ‖v‖2 + ‖w‖2 + 2
√
〈v, v〉 ·

√
〈w,w〉

= ‖v‖2 + ‖w‖2 + 2 ‖v‖ · ‖w‖

= (‖v‖+ ‖w‖)2 .

Hence,

‖v + w‖ ≤ ‖v‖+ ‖w‖ .

Thus an inner product space is a normed vector space. �

Proposition. V – an inner product space, v, v1, . . . , vn ∈ V

If v⊥vi for any i = 1, . . . , n, then

v⊥
n∑
i=1

αivi for any α1, . . . , αn ∈ F.

Proof. Let α1, . . . , αn ∈ F. Since 〈v, vi〉 = 0 for any i = 1, . . . , n, we have〈
v,

n∑
i=1

αivi

〉
= 〈v, α1v1 + . . .+ αnvn〉

= 〈v, α1v1〉+ . . .+ 〈v, αnvn〉

= α1 〈v, v1〉+ . . .+ αn 〈v, vn〉

=
n∑
i=1

αi 〈v, vi〉

= 0,

that is,

v⊥
n∑
i=1

αivi. �

Theorem. (Pythagorean theorem) V – an inner product space, v, w ∈ V

If v⊥w, then

‖v + w‖2 = ‖v‖2 + ‖w‖2 .
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Proof. Since 〈v, w〉 = 0, we have

‖v + w‖2 = 〈v + w, v + w〉 = 〈v, v〉+ 〈w,w〉+ 〈v, w〉+ 〈w, v〉 = ‖v‖2 + ‖w‖2 . �

Theorem. (Generalized Pythagorean theorem) V – an inner product space, v1, . . . , vn ∈
V

If v1, . . . , vn are orthogonal to each other, that is, 〈vi, vj〉 = 0 for all i, j = 1, . . . , n and i 6= j,

then ∥∥∥∥∥
n∑
i=1

vi

∥∥∥∥∥
2

=

n∑
i=1

‖vi‖2 .

Proof. We induct on n. For n = 1 it is easy. For n = 2 it is Pythagorean theorem. Suppose

the assertion is true for a fixed n. Let v1, . . . , vn+1 ∈ V be orthogonal to each other. We have〈
vn+1,

n∑
i=1

αivi

〉
= 0

and from Pythagorean theorem,∥∥∥∥∥
n+1∑
i=1

vi

∥∥∥∥∥
2

=

∥∥∥∥∥vn+1 +
n∑
i=1

vi

∥∥∥∥∥
2

= ‖vn+1‖2 +

∥∥∥∥∥
n∑
i=1

vi

∥∥∥∥∥
2

= ‖vn+1‖2 +
n∑
i=1

‖vi‖2

=
n+1∑
i=1

‖vi‖2 . �

Conclusion. V – an inner product space, v1, . . . , vn ∈ V , α1, . . . , αn ∈ F

If v1, . . . , vn are orthogonal to each other, that is, 〈vi, vj〉 = 0 for all i, j = 1, . . . , n and i 6= j,

then ∥∥∥∥∥
n∑
i=1

αivi

∥∥∥∥∥
2

=
n∑
i=1

|αi|2 ‖vi‖2 .

Conclusion. V – an inner product space, v1, . . . , vn ∈ V

If v1, . . . , vn are orthogonal to each other, that is, 〈vi, vj〉 = 0 for all i, j = 1, . . . , n and i 6= j,

then the set {v1, . . . , vn} is linearly independent.
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Definition. (Orthogonal set, orthonormal set) V – an inner product space, v1, . . . , vn ∈ V

The set (v1, . . . , vn) is said to be orthogonal if 〈vi, vj〉 = 0 for all i, j = 1, . . . , n and i 6= j. An

orthogonal set (v1, . . . , vn) is said to be orthonormal if ‖vi‖ = 1 for all i = 1, . . . , n.

Conclusion. V – an inner product space, v1, . . . , vn ∈ V , (v1, . . . , vn) – orthonormal set

Then, ∥∥∥∥∥
n∑
i=1

αivi

∥∥∥∥∥
2

=
n∑
i=1

|αi|2 .

Conclusion. Any orthogonal (orthonormal) set is linearly independent.

Definition. (Orthogonal basis, orthonormal basis) V – an inner product space

Orthogonal basis of V =
df

a basis of V that is also an orthogonal set.

Orthonormal basis of V =
df

a basis of V that is also an orthonormal set.

Conclusion. V – an n-dimensional inner product space, v1, . . . , vn ∈ V ,

(v1, . . . , vn) – orthogonal (orthonormal) set

Then (v1, . . . , vn) is an orthogonal (orthonormal) basis of V .

Remark. If (v1, . . . , vn) is an orthogonal basis of an inner product space V , then
(

v1
‖v1‖ , . . . ,

vn
‖vn‖

)
is an orthonormal basis of V , because

∥∥∥ vi
‖vi‖

∥∥∥ = ‖vi‖
‖vi‖ = 1 for all i = 1, . . . , n.

Theorem. V – an inner product space, (v1, . . . , vn) – an orthogonal basis of V

Then, for any v ∈ V ,

v =

n∑
i=1

〈v, vi〉
‖vi‖2

vi.

Proof. Let v ∈ V and
(

v1
‖v1‖ , . . . ,

vn
‖vn‖

)
be an orthonormal basis of V . Then there exist

α1, . . . , αn ∈ F such that

v =
n∑
i=1

αi
vi
‖vi‖

.

We show that αi = 〈v,vi〉
‖vi‖ for all i = 1, . . . , n. For any j = 1, . . . , n we have

〈v, vj〉 =

〈
n∑
i=1

αi
vi
‖vi‖

, vj

〉
=

n∑
i=1

αi
‖vi‖
〈vi, vj〉

=
αj
‖vj‖
〈vj , vj〉 =

αj
‖vj‖

‖vj‖2 = αj ‖vj‖ ,
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whence αj =
〈v,vj〉
‖vj‖ for all j = 1, . . . , n. �

Conclusion. V – an inner product space, (v1, . . . , vn) – an orthonormal basis of V

Then, for any v ∈ V ,

v =

n∑
i=1

〈v, vi〉vi.

Conclusion. V – an inner product space, B = (v1, . . . , vn) – an orthonormal basis of V

Then, for any v ∈ V ,

[v]B =


〈v, v1〉

...

〈v, vn〉

 .
Definition. (Unit vector) V – a normed vector space, v ∈ V

v is a unit vector ⇔
df
‖v‖ = 1.

Remark. Let v 6= 0. Then v
‖v‖ is a unit vector.

Definition. (Projection onto a vector) V – an inner product space, v, w ∈ V , w 6= 0

Define the orthogonal projection of v onto w by

Pw(v) =
df

〈v, w〉
‖w‖2

w.

Note that Pw is a linear transformation.

Definition. (Projection onto a subspace) V – an inner product space, v ∈ V ,

W ⊆ V – an n-dimensional subspace of V , (w1, . . . , wn) – an orthogonal basis of W

Define the orthogonal projection of v onto W by

PW (v) =
df

n∑
i=1

〈v, wi〉
‖wi‖2

wi.

Note that PW : V → V is a linear transformation, and R(PW ) ⊆W .

Remark. PW (v) = v iff v ∈ W . Also, the definition of PW (v) does not depend on the

orthogonal basis (w1, . . . , wn).



10

Remark. V – an inner product space, v ∈ V , W ⊆ V – an n-dimensional subspace of V ,

(w1, . . . , wn) – an orthogonal set of nonzero vectors in W

We can write

v = (v − PW (v)) + PW (v).

Note that PW (v) ∈W and (v−PW (v)) is orthogonal to wi for each i = 1, . . . , n. So, (v−PW (v))

is orthogonal to any vector in W .

Conclusion. V – an inner product space, v ∈ V , W ⊆ V – an n-dimensional subspace of V ,

(w1, . . . , wn) – an orthonormal basis of W

Then

PW (v) =
df

n∑
i=1

〈v, wi〉wi.

Theorem. (Gram-Schmidt Orthogonalization) V – an inner product space,

{v1, . . . , vn} – a linearly independent set

Let

w1 = v1

w2 = v2 − Pw1(v2) = v2 −
〈v2, w1〉
‖w1‖2

w1

w3 = v3 − Pspan(w1,w2)(v3) = v3 −
[
〈v3, w1〉
‖w1‖2

w1 +
〈v3, w2〉
‖w2‖2

w2

]
...

wn = vn − Pspan(w1,...,wn−1)(vn) = vn −
[
〈vn, w1〉
‖w1‖2

w1 + · · ·+ 〈vn, wn−1〉
‖wn−1‖2

wn−1

]
.

Then {w1, . . . , wn} is an orthogonal set of nonzero vectors in V . Also, span(w1, . . . , wk) =

span(v1, . . . , vk) for each k = 1, . . . , n. Finally, note that the set
(

w1
‖w1‖ , . . . ,

wn
‖wn‖

)
is an or-

thonormal set of vectors in V with the same span as v1, . . . , vn.

Proof. We prove it by induction on k = 2, . . . , n. We know that w2⊥w1 by previous Re-

mark. Assume that {w1, . . . , wk} is orthogonal, w1, . . . , wk are nonzero and span(w1, . . . , wk) =

span(v1, . . . , vk) for some k. Then

wk+1 = vk+1 − Pspan(w1,...,wk)(vk+1) = vk+1 − Pspan(v1,...,vk)(vk+1)(1)

By previous Remark wk+1 is orthogonal to any vector in span(v1, . . . , vk) = span(w1, . . . , wk).

We have

vk+1 /∈ span(v1, . . . , vk) (by linear independence)⇒ vk+1 6= Pspan(v1,...,vk)(vk+1)⇒ wk+1 6= 0.
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Hence {w1, . . . , wk+1} is an orthogonal set of nonzero vectors. By (1), wk+1 ∈ span(v1, . . . , vk+1),

that is,

span(w1, . . . , wk+1) ⊆ span(v1, . . . , vk+1).

Moreover, {w1, . . . , wk+1} and {v1, . . . , vk+1} are orthogonal sets, so bases. Hence

span(w1, . . . , wk+1) = span(v1, . . . , vk+1). �

Conclusion. Every finite-dimensional inner product space has an orthogonal (orthonormal)

basis.

Conclusion. V – an inner product space, W ⊆ V – a finite-dimensional subspace of V

Then there exists a linear transformation P : V → V such that P 2 = P , R(P ) ⊆ W and

P (w) = w for any w ∈W . That is, P is a projection onto W .

Definition. (Orthogonal subspaces) V1, V2 ⊆ V – subspaces of an inner product space V

V1 is orthogonal to V2, V1⊥V2 ⇔
df
v1⊥v2 for all v1 ∈ V1 and v2 ∈ V2.

Proposition. V1, V2 ⊆ V – subspaces of an inner product space V

Then,

V1⊥V2 ⇒ V1 ∩ V2 = {0}.

Proof. Since 0 ∈ V1 and 0 ∈ V2, it follows 0 ∈ V1 ∩ V2. Assume that v ∈ V1 ∩ V2. Then, v ∈ V1
and v ∈ V2. Now, we know that if v1 ∈ V1 and v2 ∈ V2, then v1⊥v2, that is, 〈v1, v2〉 = 0. In

particular, 〈v, v〉 = 0, that is, v = 0. Thus, V1 ∩ V2 = {0}. �

Definition. (Orthogonal complement) V1 ⊆ V – a subspace of an inner product space V

Define the orthogonal complement of V1 in V by

V ⊥1 =
df
{v ∈ V : 〈v, v1〉 = 0 for all v1 ∈ V1}.

Exercise. Show that {0}⊥ = V and V ⊥ = {0}.

Exercise. Let V1 be a subspace of an inner product space V . Show that V ⊥1 is a subspace of

V .

The following Theorem gives an algorithm for computing orthogonal complements.



12

Theorem. V – an n-dimensional inner product space, W ⊆ V – an k-dimensional subspace of

V ,

(v1, . . . , vk) – a basis of W , (v1, . . . , vn) – an extension of (v1, . . . , vk)

w1, . . . , wn – orthonormal vectors produced by Gram-Schmidt Orthogonalization

Then (w1, . . . , wk) is an orthonormal basis of W and (wk+1, . . . , wn) is an orthonormal basis of

W⊥.

Proof. We know that span(w1, . . . , wk) = span(v1, . . . , vk), so (w1, . . . , wk) is an orthonormal

basis of W . We have wk+1, . . . , wn are orthonormal, so linearly independent.

W⊥
?
= span(wk+1, . . . , wn)

Let j ∈ {k + 1, . . . , n}. Then wj⊥wi for all i = 1, . . . , k (by Gram-Schmidt Orthogonalization),

that is, wj is orthogonal to all vectors of W . Hence, wj ∈ W⊥. So, span(wk+1, . . . , wn) ⊆ W⊥.

Let w ∈W⊥ ⊆ V . Hence,

w =
n∑
i=1

〈w,wi〉wi.

Since w ∈W⊥, it follows 〈w,wi〉 = 0 for all i = 1, . . . , k, that is,

w =
n∑

i=k+1

〈w,wi〉wi.

So, w ∈ span(wk+1, . . . , wn). Therefore,

W⊥ = span(wk+1, . . . , wn). �

Conclusion. (Dimension Theorem for orthogonal complements)

V – a finite-dimensional inner product space, W ⊆ V – a subspace of V

Then

dim(W ) + dim(W⊥) = dim(V ).

Conclusion. V – a finite-dimensional inner product space, W ⊆ V – a subspace of V

Then every v ∈ V can be written uniquely as v = w1 + w2, where w1 ∈W and w2 ∈W⊥.
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2. Quadratic forms

Definition. f : Rn → R – a function

f is a quadratic form in Rn ⇔
df

f(x) =

n∑
i,j=1

αijxixj

for x = (x1, . . . , xn) ∈ Rn, αij ∈ R, i, j = 1, . . . , n.

Examples.

1. f : R2 → R, f(x) = α11x
2
1 + α12x1x2 + α22x

2
2, x = (x1, x2).

2. f : R3 → R, f(x) = α11x
2
1 + α22x

2
2 + α33x

2
3 + α12x1x2 + α13x1x3 + α23x2x3, x = (x1, x2, x3).

Theorem. f : Rn → R – a quadratic form

Then

1) f(0) = 0,

2) f(αx) = α2f(x).

Proof. Easy. �

Theorem. f : Rn → R – a quadratic form

There exists a unique symmetric matrix A = [αij ]n×n such that

f(x) =

n∑
i,j=1

αijxixj for x = (x1, . . . , xn) ∈ Rn.

Moreover,

f(x) =
n∑
i=1

αiix
2
i + 2

n∑
1≤i<j≤n

αijxixj .

Proof. Let f(x) =
n∑

i,j=1
βijxixj and let B = [βij ]. Then

f(x) =
n∑
i=1

βiix
2
i + 2

n∑
1≤i<j≤n

(βij + βji)xixj =
n∑

i,j=1

βij + βji
2

xixj .

Thus, A = 1
2(B +BT ). Obviously, it is symmetric.
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Now, we prove that A is unique. Let C = [γij ]n×n be such that

f(x) =
n∑

i,j=1

γijxixj .

Then, f(ei) = αii = γii for i = 1, . . . , n, where (e1, . . . , en) is the standard basis of Rn. Moreover,

f(ei + ej) = αii + 2αij + αjj

and

f(ei + ej) = γii + 2γij + γjj = αii + 2γij + αjj ,

that is, αij = γij for all i, j = 1, . . . , n.

Hence, A = C, that is, A is unique. �

Definition. f : Rn → R – a quadratic form, A = [αij ]n×n – a symmetric matrix

A is a matrix of f in the standard basis of Rn ⇔
df

f(x) =

n∑
i,j=1

αijxixj =
n∑
i=1

αiix
2
i + 2

n∑
1≤i<j≤n

αijxixj ,

where x = (x1, . . . , xn) ∈ Rn.

Remark. For a quadratic form f : Rn → R we can use the following matrix notation

f(x) = XT ·A ·X,

where x = (x1, . . . , xn) ∈ Rn and X = [x1 · · ·xn]T .

Definition. f : Rn → R – a quadratic form, B = (v1, . . . , vn) – a basis of Rn

B = [βij ]n×n is a matrix of f in B ⇔
df

f(x) =
n∑

i,j=1

βijyiyj = Y TBY,

where x = y1v1 + . . .+ ynvn and Y = [y1 · · · yn]T .

Then f(x) = Y T ·B · Y is a matrix notation of f in a basis B.
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Theorem. f : Rn → R – a quadratic form, A – the standard basis of Rn, B – some basis of

Rn

A – a matrix of f in A, Q = [IRn ]AB

Then a matrix B of f in B has a form

B = QT ·A ·Q.

Proof. Let x = (x1, . . . , xn) ∈ Rn, X = [x]A, Y = [x]B. Then we know that QY = X. Hence,

f(x) = XT ·A ·X = (QY )T ·A · (QY ) = Y T · (QT ·A ·Q) · Y

and

f(x) = Y T ·B · Y in a basis B.

Let B = (v1, . . . , vn), B = [βij ]n×n, QT ·A ·Q = [γij ]n×n. Then

f(vi) = γii = βii for i = 1, . . . , n,

f(vi + vj) = γii + 2γij + γjj

and

f(vi + vj) = βii + 2βij + βjj = γii + 2βij + γjj

for i, j = 1, . . . , n such that i 6= j, that is, γij = βij for all i, j = 1, . . . , n.

Hence, QTAQ = B. �

Definition. f : Rn → R – a quadratic form, B – a basis of Rn

f has a canonical form in B ⇔
df∨

δ1,...,δn∈R

∧
x∈Rn

f(x) = δ1y
2
1 + . . .+ δny

2
n,

where [x]B = [y1 · · · yn]T , δ1, . . . , δn – coefficients.

Definition. f : Rn → R – a quadratic form

A canonical basis of f =
df

any basis of Rn in which f has a canonical form.

Remark. A quadratic form can have many canonical bases and many canonical forms. A

matrix of a quadratic form in its canonical basis is diagonal.

Theorem. Any quadratic form in Rn has a canonical basis.
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Remark. As proof of this theorem we present Lagrange’s method of finding a canonical form

of a quadratic form.

Lagrange’s method:

Let f : Rn → R and

f(x) =
n∑
i=1

αiix
2
i + 2

n∑
1≤i<j≤n

αijxixj .

1.
∨
i
αii 6= 0

Assume that α11 6= 0. We group all terms with x1:(
α11x

2
1 + 2α12x1x2 + . . .+ 2α1nx1xn

)
+ h(x2, . . . , xn)

and next we multiply and divide the expression in brackets by α11:

1

α11

(
α2
11x

2
1 + 2α11α12x1x2 + . . .+ 2α11α1nx1xn

)
+ h(x2, . . . , xn).

Now, we use the following formula

(x1 + x2 + . . .+ xn)2 = x21 + x22 + . . .+ x2n + 2
n∑

1≤i<j≤n
xixj

and get

1

α11
(α11x1 + α12x2 + . . .+ α1nxn)2 − 1

α11

(
α2
12x

2
2 + . . .+ α2

1nx
2
n + 2α12α13x2x3 + . . .

)
+ h(x2, . . . , xn)

=
1

α11
(α11x1 + α12x2 + . . .+ α1nxn)2 + h1(x2, . . . , xn),

where h1(x2, . . . , xn) = − 1
α11

(
α2
12x

2
2 + . . .+ α2

1nx
2
n + 2α12α13x2x3 + . . .

)
+h(x2, . . . , xn) is a qua-

dratic form in Rn−1.

We continue and finally make substitution to obtain a canonical form of f .

2.
∧
i
αii = 0

Assume that α12 6= 0. We put

x1 = y1 + y2, x2 = y1 − y2, x3 = y3, . . . , xn = yn.

Then

2α12x1x2 = 2α12(y1 + y2)(y1 − y2) = 2α12y
2
1 − 2α12y

2
2.

Further we make point 1.



17

Example. Using the Lagrange’s method find a canonical form of a quadratic form f : R3 → R
such that

f(x) = 2x21 − x22 + 3x23 + 2x1x2 − 4x1x3 − 3x2x3 for x = (x1, x2, x3) ∈ R3.

Solution.

We have

f(x) = 2x21 − x22 + 3x23 + 2x1x2 − 4x1x3 − 3x2x3

= 2
(
x21 + x1x2 − 2x1x3

)
− x22 + 3x23 − 3x2x3

= 2

(
x21 +

1

4
x22 + x23 + x1x2 − 2x1x3 − x2x3

)
− 1

2
x22 − 2x23 + 2x2x3 − x22 + 3x23 − 3x2x3

= 2

(
x1 +

1

2
x2 − x3

)2

− 3

2
x22 + x23 − x2x3

= 2

(
x1 +

1

2
x2 − x3

)2

− 3

2

(
x22 +

2

3
x2x3

)
+ x23

= 2

(
x1 +

1

2
x2 − x3

)2

− 3

2

(
x22 +

2

3
x2x3 +

1

9
x23

)
+

1

6
x23 + x23

= 2

(
x1 +

1

2
x2 − x3

)2

− 3

2

(
x2 +

1

3
x3

)2

+
7

6
x23.

Substituting

y1 = x1 +
1

2
x2 − x3

y2 = x2 +
1

3
x3

y3 = x3

we get the following canonical form of that quadratic form:

f(x) = 2y21 −
3

2
y22 +

7

6
y23.

Example. Using the Lagrange’s method find a canonical form of a quadratic form f : R3 → R
such that

f(x) = x1x2 − x2x3 + x1x3 for x = (x1, x2, x3) ∈ R3.
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Solution.

Now, we don’t have a term with x2i . So we put

x1 = y1 + y2

x2 = y1 − y2
x3 = y3

and get

f(x) = x1x2 − x2x3 + x1x3

= (y1 + y2)(y1 − y2)− (y1 − y2)y3 + (y1 + y2)y3

= y21 − y22 − y1y3 + y2y3 + y1y3 + y2y3

= y21 − y22 + 2y2y3

= y21 −
(
y22 − 2y2y3 + y23

)
+ y23

= y21 − (y2 − y3)2 + y23

Substituting

z1 = y1

z2 = y2 − y3
z3 = y3

we get the following canonical form of that quadratic form:

f(x) = z21 − z22 + z23 .

Definition. f : Rn → R – a quadratic form

f is positive definite ⇔
df

f(x) > 0 for any x ∈ Rn

Theorem. f : Rn → R – a quadratic form, f(x) =
n∑
i=1
δix

2
i – a canonical form of f

Then f is positive definite iff δi > 0 for all i = 1, . . . , n.

Proof. Easy. �

Theorem. f : Rn → R – a positive definite quadratic form

f(x) =
n∑

i,j=1
αijxixj for x = (x1, . . . , xn) ∈ Rn

Then a matrix A = [αij ] of f satisfies

1) αii > 0 for any i = 1, . . . , n,

2) det(A) > 0.
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Proof. 1) Let A = (e1, . . . , en) be the standard basis of Rn. Then

f(ei) = αii > 0 for any i = 1, . . . , n,

because f is positive definite.

2) Let A be the standard basis of Rn, B be a canonical basis of f and B be a matrix of f in B.

If f(x) =
n∑
i=1
δix

2
i in B, then

B =


δ1 0 . . . 0

0 δ2 . . . 0
...

...
. . .

...

0 0 . . . δn


and δi > 0 for all i = 1, . . . , n. Now, if Q = [IRn ]AB , then

B = QTAQ.

Hence,

det(B) = det
(
QT
)
· det(A) · det(Q) = (det(Q))2 · det(A).

Since det(B) = δ1 · · · δn > 0 and (det(Q))2 > 0, it follows that det(A) > 0. �

Theorem. (Jacobi) B = (v1, . . . , vn) – a basis of Rn

f : Rn → R – a quadratic form, f(x) =
n∑

i,j=1
αijxixj in B

If

∆k = det


α11 α12 . . . α1k

α21 α22 . . . α2k

...
...

. . .
...

αk1 αk2 . . . αkk

 6= 0 for all k = 1, . . . , n,

then there exists a basis B′ = (u1, . . . , un) of Rn in which f has a form

f(x) =
∆0

∆1
y21 +

∆1

∆2
y22 + . . .+

∆n−1
∆n

y2n,

where ∆0 = 1.

Moreover,

f is positive definite ⇔
∧

k=1,...,n

∆k > 0.

(without proof)
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Example. Using the Jacobi’s method find a canonical form of a quadratic form f : R3 → R
such that

f(x) = 2x21 + 5x22 + x23 − 4x1x2 + 2x1x3 for x = (x1, x2, x3) ∈ R3.

Is the form f positive definite?

Solution.

Let B be the standard basis of R3. Then a matrix of f in B has the form 2 −2 1

−2 5 0

1 0 1


and

∆0 = 1, ∆1 = 2, ∆2 =

∣∣∣∣∣ 2 −2

−2 5

∣∣∣∣∣ = 6, ∆3 =

∣∣∣∣∣∣∣
2 −2 1

−2 5 0

1 0 1

∣∣∣∣∣∣∣ = 1.

Now, form f is positive definite, because ∆1,∆2,∆3 > 0 and f has the following canonical form:

f(x) =
∆0

∆1
y21 +

∆1

∆2
y22 +

∆2

∆3
y23 =

1

2
y21 +

1

3
y22 + 6y23.
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3. Cartesian space Rn

Cartesian coordinates on the line:

-
o

r
x1

p = (x1)

On the line we choose an arbitrary point o as the origin. It divides the line into two halflines.

Regarding one of them as the positive halfline and the other as negative halfline, we obtain the

axis. To any point p we assign a number x1 called its Cartesian coordinate. In that way we get

the Cartesian space R1.

The formula of the distance of two points x, y ∈ R1:

ρ(x, y) = |x− y| .

Cartesian coordinates on the plane:

-

6

r
o

p = (x1, x2)

x1

x2

On the plane let us consider two lines intersecting at a point o as the origin and on each of

them let us fix Cartesian coordinates. We obtain the axes, which form the Cartesian system of

coordinates.

p = (x1, x2) – Cartesian coordinates of the point p

If axes are perpendicular, then the Cartesian coordinates are called rectangular. In that way we

get the Cartesian space R2.
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The formula of the distance of two points x = (x1, x2), y = (y1, y2) ∈ R2:

ρ(x, y) =
√

(x1 − y1)2 + (x2 − y2)2.

Cartesian coordinates in the space:

-

6

�
�

�
�
�

�
�

�
�	

o

r
x1

x2

x3

p = (x1, x2, x3)

In the space let us take three lines not lying in one plane and passing through one point o as the

origin, and on each of them let us fix Cartesian coordinates. We obtain the axes, which form

the Cartesian system of coordinates.

p = (x1, x2, x3) – Cartesian coordinates of the point p

If each axis is perpendicular to both the remaining ones, then the system is called rectangular.

In that way we get the Cartesian space R3.

The formula of the distance of two points x = (x1, x2, x3), y = (y1, y2, y3) ∈ R3:

ρ(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2.

Definition. (Metric space) X – a set, ρ : X ×X → [0,∞) – a function

A metric space is a pair (X, ρ) such that

1)
∧

x,y∈X
ρ(x, y) = ρ(y, x),

2)
∧

x,y∈X
ρ(x, y) = 0 ⇔ x = y,

3)
∧

x,y,z∈X
ρ(x, y) + ρ(y, z) ≥ ρ(x, z).

Elements of X – points, ρ – a metrics, ρ(x, y) – the distance of points x, y.
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Definition. (n-dimensional Cartesian space) An n-dimensional Cartesian space is the set

Rn = {(x1, . . . , xn) : xi ∈ R}

together with a metrics ρ : Rn × Rn → [0,∞) given by formula

ρ((x1, . . . , xn), (y1, . . . , yn)) =

√√√√ n∑
i=1

(xi − yi)2.

Thus (Rn, ρ) is a metric space.

Exercise. Show that a function ρ defined above is a metrics.

Definition. x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn, t ∈ R

Define

x+ y =
df

(x1 + y1, . . . , xn + yn) − an addition of points x, y,

−x =
df

(−x1, . . . ,−xn)

x− y =
df
x+ (−y) − a subtraction of points x, y,

tx =
df

(tx1, . . . , txn) − a multiplication of a point x by a number t,

x · y =
df

n∑
i=1

xiyi − a scalar multiplication of points x, y,

x1 = x, xk+1 =
df
xk · x − a power of a point x,

0 =
df

(0, . . . , 0).

Theorem. x, y, z ∈ Rn, t ∈ R

We have

1) x+ y = y + x,

2) (x+ y) + z = x+ (y + z),

3) t(x+ y) = tx+ ty,

4) tx = 0⇔ t = 0 ∨ x = 0,

5) x · y = y · x,

6) ∼ (x · y) · z = x · (y · z),
7) (tx) · y = t(x · y),

8) x · (y + z) = x · y + x · z,
9) (tx)k = tkxk,

10) ∼ (x · y)k = xk · yk,
11) (x · y)2 ≤ x2 · y2 – Schwarz inequality.

Proof. Easy. �
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Definition. x = (x1, . . . , xn) ∈ Rn

A modulus of a point x is a number:

|x| =
df
ρ(x, 0) =

√√√√ n∑
i=1

x2i

(it is the distance of a point x and point 0).

Theorem. x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn, t ∈ R

We have

1) x2 = |x|2 =
∑n

i=1 x
2
i ,

2) ρ(x, y) = |x− y| =
√

(x− y)2,

3) |x| ≥ 0,

4) |x| = |−x|,
5) |x| = 0⇔ x = 0,

6) |tx| = |t| |x|,
7) |x · y| ≤ |x| · |y|,
8) |x+ y| ≤ |x|+ |y|,
9) |x| − |y| ≤ |x− y|,
10) (x+ y)2 = x2 + 2x · y + y2,

11) (x− y)2 = x2 − 2x · y + y2,

12) x2 − y2 = (x− y) · (x+ y).

Proof. 1) – 5) Easy.

6) |tx| =
√∑n

i=1(txi)
2 =

√
t2
∑n

i=1 x
2
i = |t|

√∑n
i=1 x

2
i = |t| |x|.

7) |x · y| =
√∑n

i=1(xiyi)
2 =

√∑n
i=1 x

2
i y

2
i ≤

√∑n
i=1 x

2
i ·
∑n

i=1 y
2
i =

√∑n
i=1 x

2
i ·
√∑n

i=1 y
2
i =

|x| · |y| (by Schwarz inequality).

8) |x+ y| = |x− (−y)| = ρ(x,−y) ≤ ρ(x, 0) + ρ(0,−y) = ρ(x, 0) + ρ(0, y) = |x|+ |y|.
9) |x| = |y + (x− y)| ≤ |y|+ |x− y|, whence |x| − |y| ≤ |x− y|.
10), 11) and 12) follow from 8) of previous theorem. �

Definition. (X, ρ) – a metric space, a, b ∈ X

A metric segment is a set:

〈a, b〉 =
df
{x ∈ X : ρ(a, x) + ρ(x, b) = ρ(a, b)}.

Definition. (X, ρ) – a metric space, a, b, c ∈ X

c is a centre of a segment 〈a, b〉 ⇔
df

ρ(a, c) = ρ(b, c) =
1

2
ρ(a, b).
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Theorem. a, b ∈ Rn

There exists exactly one centre of a segment 〈a, b〉; it is a point c = 1
2(a+ b).

Proof. If a = b, then Theorem is obvious. Let a 6= b. We have

ρ(a, c) = |a− c| =
∣∣∣∣a− 1

2
(a+ b)

∣∣∣∣ =
1

2
|a− b| = 1

2
|b− a| =

∣∣∣∣b− 1

2
(a+ b)

∣∣∣∣ = |b− c| = ρ(b, c).

Hence c is a centre of a segment 〈a, b〉.
Let d = c+ x be also a centre of a segment 〈a, b〉. Then

ρ(a, d) =
1

2
ρ(a, b) =

1

2
|a− b| = |a− d| =

∣∣∣∣a− 1

2
a− 1

2
b− x

∣∣∣∣ =

∣∣∣∣12a− 1

2
b− 1

2
· 2x
∣∣∣∣ =

1

2
|a− b− 2x| ,

that is, |a− b| = |a− b− 2x|.
Similarly,

ρ(b, d) =
1

2
|a− b| = |d− b| = 1

2
|a− b+ 2x| ,

whence |a− b| = |a− b+ 2x|.
Thus,

|a− b− 2x|2 = |a− b+ 2x|2 ,

that is,

(a− b)2 − 4x(a− b) + 4x2 = (a− b)2 + 4x(a− b) + 4x2,

whence

x(a− b) = 0.

Now, a− b 6= 0 (since a 6= b), so x = 0.

Thus, d = c. �

Definition. A ⊆ Rn

A is convex ⇔
df

∧
a,b∈A

〈a, b〉 ⊆ A.

Conclusion. A segment in Rn is a convex set.
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4. Vectors in space Rn

Definition. A localized vector in Rn =
df

an ordered pair of points in Rn.

Denotation:
−→
ab for a, b ∈ Rn, a – the initial point of

−→
ab , b – the end-point of

−→
ab .

Definition. Coordinates of a localized vector
−→
ab =

df
coordinates of a point b− a.

If a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Rn, then
−→
ab = [b1 − a1, . . . , bn − an].

Definition. a, b, a′, b′ ∈ Rn

−→
ab =

−→
a′b′ ⇔

df

−→
ab and

−→
a′b′ have the same coordinates ⇔

df
b− a = b′ − a′

⇔ a′ + b = a+ b′ ⇔ 1

2
(a′ + b) =

1

2
(a+ b′)

�
�
�
���

�
�
�
���r

a

b

a′

b′

(two localized vectors
−→
ab and

−→
a′b′ are equal iff the centres of 〈a′, b〉 and 〈a, b′〉 coinicide).

Theorem. The relation of equality of localized vectors is an equivalence relation.

Proof. Easy. �

Definition. A free vector (vector) in Rn =
df

an equivalence class of the relation of equality of

localized vectors,

that is, [
−→
ab

]
=

{
−→
cd :

−→
ab =

−→
cd

}
− a free vector with a representative

−→
ab .

Denotation: a, b, c, . . . (small gothic letters).

Remark. All representatives of a free vector have the same coordinates.

Definition. Coordinates of a free vector =
df

coordinates of its representative.

Definition. a, a, b ∈ Rn,
−→
ab ∈ a

|a| =
df
ρ(a, b) − a length of a vector a.

If a = [α1, . . . , αn], then |a| =
√∑n

i=1 α
2
i .
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Definition. A versor =
df

a vector of length 1.

Theorem. (On localization of a free vector at a point) Every free vector in Rn can be

uniquely localized at an arbitrary point a ∈ Rn.

Proof. a, a ∈ Rn

We search a point b ∈ Rn such that
−→
ab ∈ a.

Let
−→
cd ∈ a. Then

−→
ab =

−→
cd ⇔ b− a = d− c⇔ b = d− c+ a. �

Theorem. For every free vector a ∈ Rn and every point b ∈ Rn there exists a unique represen-

tative of a with the end-point b.

Proof. Similar (we calculate a). �

Definition. a = [α1, . . . , αn], b = [β1, . . . , βn] ∈ Rn, t ∈ R

Define

a + b =
df

[α1 + β1, . . . , αn + βn] − an addition of vectors a, b,

−a =
df

[−α1, . . . ,−αn] − an opposite vector for a,

a− b =
df

[α1 − β1, . . . , αn − βn] − a subtraction of vectors a, b,

ta =
df

[tα1, . . . , tαn] − a multiplication of a vector a by a number t,

a · b =
df

n∑
i=1

αiβi − a scalar product of vectors a, b.

Remark. We will write a · a = a2.

Theorem. a, b, c ∈ Rn, t ∈ R

We have

1) a · b = b · a,

2) (ta) · b = t(a · b),

3) a2 = |a|2,
4) a · (b + c) = a · b + a · c,
5) − |a| |b| ≤ a · b ≤ |a| |b|.

Proof. Easy. Point 5) follows from Schwartz inequality. �

Theorem.
−→
ab ∈ a ∧

−→
bc ∈ b ⇒ −→

ac ∈ [a + b]

Proof. Easy. �
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Definition. a, b ∈ Rn

a, b are equally parallel, a �� b ⇔
df
|a|+ |b| = |a + b|

�
�
�
���

�
�
�
�
�
��

a
b

a, b are oppositely parallel, a �� b ⇔
df
|a|+ |b| = |a− b|

�
�
�
��� �

�
�
�

�
�

��	

a

b

a, b are parallel, a ‖ b ⇔
df

a �� b ∨ a �� b

Theorem. a, b ∈ Rn, a 6= 0 6= b

Then,

a ‖ b ⇔
∨
t6=0

b = ta

and t > 0 ⇒ a �� b,

t < 0 ⇒ a �� b.

Proof. Easy. �

Theorem. In the set of nonzero vectors in Rn relations ‖ and �� are equivalence relations.

Proof. Easy. �

Definition. a ∈ Rn

A direction of a vector a =
df

an equivalence class of the relation ‖ with a representative a,

that is,

K(a) = {b : b ‖ a ∧ b 6= 0}.

A sense of a vector a =
df

an equivalence class of the relation �� with a representative a,

that is,

Z(a) = {b : b �� a ∧ b 6= 0}.
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We have: Z(a) ⊆ K(a).

Remark. a, b ∈ Rn, a 6= 0 6= b

Since − |a| |b| ≤ a · b ≤ |a| |b|, it follows that there is a unique number θ such that

a · b = |a| |b| cos θ and 0 ≤ θ ≤ π.

If a = 0 or b = 0, then θ is arbitrary such that 0 ≤ θ ≤ π.

Definition. a, b ∈ Rn

A number ^(a, b) ∈ [0, π] such that

cos(^(a, b)) =
a · b
|a| |b|

is called an angle in Rn between vectors a, b.

Theorem. a, b ∈ Rn

We have

1) ^(a, b) = ^(b, a),

2) t, s > 0 ⇒ ^(a, b) = ^(ta, sb),

3) ^(a, b) + ^(−a, b) = π,

4) ^(a, b) = ^(−a,−b).

Proof. Easy. �

Definition. a, b ∈ Rn

a, b are perpendicular, a⊥b ⇔
df
^(a, b) =

π

2
∨ a = 0 ∨ b = 0.

Theorem. a, b ∈ Rn

Then

a⊥b ⇔ a · b = 0.

Proof. Follows immediately from the formula a · b = |a| |b| cos(^(a, b)). �

Definition. (Vector product in R3) a, b ∈ R3, a = [α1, α2, α3], b = [β1, β2, β3]

A vector product of a and b is a vector

a× b =
df

[∣∣∣∣∣ α2 α3

β2 β3

∣∣∣∣∣ ,−
∣∣∣∣∣ α1 α3

β1 β3

∣∣∣∣∣ ,
∣∣∣∣∣ α1 α2

β1 β2

∣∣∣∣∣
]
.
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Remark. If we denote by i, j, k versors of coordinate axes in R3, that is, i = [1, 0, 0], j = [0, 1, 0]

and k = [0, 0, 1], then

a× b =

∣∣∣∣∣∣∣
i j k

α1 α2 α3

β1 β2 β3

∣∣∣∣∣∣∣ .
Example. Determine a× b if a = [1, 1,−1] and b = [2,−1, 3].

Solution.

a× b =

∣∣∣∣∣∣∣
i j k

1 1 −1

2 −1 3

∣∣∣∣∣∣∣ =

[∣∣∣∣∣ 1 −1

−1 3

∣∣∣∣∣ ,−
∣∣∣∣∣ 1 −1

2 3

∣∣∣∣∣ ,
∣∣∣∣∣ 1 1

2 −1

∣∣∣∣∣
]

= [2,−5,−3].

Theorem. a, b, c ∈ R3. Then

1) a× a = 0,

2) a× b = −b× a,

3) a× (b + c) = a× b + a× c and (a + b)× c = a× c + b× c,

4) t · (a× b) = (t · a)× b = a× (t · b), where t ∈ R,

5) (a× b) · c =

∣∣∣∣∣∣∣
α1 α2 α3

β1 β2 β3

γ1 γ2 γ3

∣∣∣∣∣∣∣, where a = [α1, α2, α3], b = [β1, β2, β3], c = [γ1, γ2, γ3],

6) a× b = 0⇔ a ‖ b,

7) a× b⊥a and a× b⊥b,

8) |a× b| = |a| |b| sin^(a, b).

Proof. Points 1) – 5) follow from above Remark.

6) We have

a ‖ b ⇔
∨
t6=0

b = ta ⇔
∨
t6=0

(ta)× b = b× b = 0 ⇔
∨
t6=0

t(a× b) = 0 ⇔ a× b = 0.

7) Follows from 5).

8) We have for a = [α1, α2, α3] and b = [β1, β2, β3]:

|a× b|2 = (α2β3 − α3β2)
2 + (α1β3 − α3β1)

2 + (α1β2 − α2β1)
2

= (α2
1 + α2

2 + α2
3)(β

2
1 + β22 + β23)− (α1β1 + α2β2 + α3β3)

2

= a2b2 − (a · b)2

= (|a| |b|)2 − (|a| |b|)2 cos2^(a, b)

= (|a| |b| sin^(a, b))2,

whence |a× b| = |a| |b| sin^(a, b). �
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Theorem. a, b, c ∈ R3, 4(a, b, c) – a triangle with vertices a, b, c, a =

[
−→
ab

]
, b =

[−→
ac
]

�
�
�
�
��

-@
@

@
@
@

a b

c

a

b

Then

|4(a, b, c)| = 1

2
|a× b|

(the area of a triangle).

Proof. We have the following Heron’s formula

|4(a, b, c)| = 1

4

√
s[s− 2ρ(b, c)][s− 2ρ(a, c)][s− 2ρ(a, b)],

where s = ρ(a, b) + ρ(a, c) + ρ(b, c).

Hence

|4(a, b, c)| = 1

4

√
(|a|+ |b|+ |a− b|)(|a|+ |b| − |a− b|)(|a| − |b|+ |a− b|)(− |a|+ |b|+ |a− b|)

=
1

2

√
(|a| |b| − a · b)(|a| |b|+ a · b)

=
1

2

√
a2b2 − (a · b)2

=
1

2
|a| |b| sin^(a, b).

Thus |4(a, b, c)| = 1
2 |a× b|. �

Conclusion. The number |a× b| is the area of a parallelogram built on vectors a and b:

�
�
�
�
��

-�
�
�
�
�

a

b
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5. Transformations of metric spaces

Definition. (X, ρ), (Y, ρ) – metric spaces, f : X → Y – a function

f is an isometry ⇔
df

1) f : X
onto−→ Y,

2)
∧

x,x′∈X
ρ(f(x), f(x′)) = ρ(x, x′).

Examples.

1. Translation: a ∈ Rn, f : Rn → Rn, f(x) = x+ a for x ∈ Rn. Then f is an isometry, since

ρ(f(x), f(x′)) =
√

(f(x)− f(x′))2 =
√

[(x+ a)− (x′ + a)]2 =
√

(x− x′)2 = ρ(x, x′)

for x, x′ ∈ Rn.

2. Rotation of the plane R2: α ∈ R, x = (x1, x2) ∈ R2, f : R2 → R2

f(x) = (x1 cosα− x2 sinα, x1 sinα+ x2 cosα) – rotation through the angle α

Then f is an isometry, since

ρ(f(x), f(x′))2 = [(x1 − x′1) cosα− (x2 − x′2) sinα]2 + [(x1 − x′1) sinα+ (x2 − x′2) cosα]2

= (x1 − x′1)2 + (x2 − x′2)2

= ρ(x, x′)2

for x = (x1, x2), x
′ = (x′1, x

′
2) ∈ R2.

Theorem. An isometry is a one-to-one transformation.

Proof. (X, ρ), (Y, ρ), f : X → Y – an isometry

Let x, x′ ∈ X. Assume that f(x) = f(x′). Then

0 = ρ(f(x), f(x′)) = ρ(x, x′) ⇒ x = x′. �

Theorem. If f : X → Y is an isometry, then f−1 : Y → X is an isometry.

Proof. (X, ρ), (Y, ρ), f : X → Y – an isometry

Obviously, f−1 is onto (because f is onto).

Let y, y′ ∈ Y . There are x, x′ ∈ X such that f−1(y) = x and f−1(y′) = x′. Hence y = f(x) and

y′ = f(x′). We have

ρ(f−1(y), f−1(y′)) = ρ(x, x′) = ρ(f(x), f(x′)) = ρ(y, y′). �

Theorem. Composition of two isometries is an isometry.

Proof. (X, ρ), (Y, ρ), (Z, ρ̂), f : X → Y , g : Y → Z – isometries
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So ∧
x,x′∈X

ρ(f(x), f(x′)) = ρ(x, x′)

and ∧
y,y′∈Y

ρ̂(g(y), g(y′)) = ρ(y, y′).

Then gf : X → Z and ∧
x,x′∈X

ρ̂(gf(x), gf(x′)) = ρ(f(x), f(x′)) = ρ(x, x′). �

Definition. (X, ρ), (Y, ρ) – metric spaces, f : X → Y – a function

f is a similarity ⇔
df

1) f : X
onto−→ Y,

2)
∨
λ>0

∧
x,x′∈X

ρ(f(x), f(x′) = λρ(x, x′).

λ – the ratio of similarity

Remark. Any isometry is a similarity with the ratio 1.

Example. Homothety with the ratio c > 0: jc : Rn → Rn, jc(x) = cx for x ∈ Rn. Then f is a

similarity with the ratio c, since

ρ(jc(x), jc(x
′)) =

√
(jc(x)− jc(x′))2 =

√
(cx− cx′)2 = c

√
(x− x′)2 = cρ(x, x′)

for x, x′ ∈ Rn.

Theorem. A similarity is a one-to-one transformation.

Proof. (X, ρ), (Y, ρ), f : X → Y – a similarity with the ratio λ > 0

Let x, x′ ∈ X and f(x) = f(x′). Then

0 = ρ(f(x), f(x′)) = λρ(x, x′)

and

λ > 0 ⇒ ρ(x, x′) = 0 ⇒ x = x′. �

Theorem. If f : X → Y is a similarity with the ratio λ > 0, then f−1 : Y → X is a similarity

with the ratio 1
λ .

Proof. (X, ρ), (Y, ρ), f : X → Y – a similarity with the ratio λ > 0

Obviously, f−1 is onto (because f is onto).

Let y, y′ ∈ Y . There are x, x′ ∈ X such that f−1(y) = x and f−1(y′) = x′. Hence y = f(x) and

y′ = f(x′). We have

ρ(f−1(y), f−1(y′)) = ρ(x, x′) =
1

λ
ρ(f(x), f(x′)) =

1

λ
ρ(y, y′).

Thus f−1 is a similarity with the ratio 1
λ . �
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Theorem. Composition of two similarities is a similarity.

Proof. (X, ρ), (Y, ρ), (Z, ρ̂)

f : X → Y – a similarity with the ratio λ1, g : Y → Z – a similarity with the ratio λ2

We will show that gf : X → Z is a similarity with the ratio λ1λ2. Let x, x′ ∈ X and y, y′ ∈ Y .

We know that

ρ(f(x), f(x′)) = λ1ρ(x, x′)

and

ρ̂(g(y), g(y′)) = λ2ρ(y, y′).

We have

ρ̂(gf(x), gf(x′)) = λ2ρ(f(x), f(x′)) = λ1λ2ρ(x, x′). �

Definition. (X, ρ), (Y, ρ) – metric spaces

X and Y are isometric ⇔
df

there exists an isometry f : X → Y .

X and Y are similar ⇔
df

there exists a similarity g : X → Y .

Remark. If X,Y are isometric, then they are similar. The converse is not true.
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6. Lines, planes and hyperplanes in space Rn

Definition. (X, ρ) – a metric space, Y ⊆ X

(Y, ρ|Y × Y ) =
df

a subspace of a metric space (X, ρ).

Definition.

A line =
df

a subspace of the space Rn isometric with R1.

Remark. L ⊆ Rn

L is a line ⇔ L is isometric with R1 ⇔ there exists an isometry f : R1 → L ⇔ there exists an

isometry g : L→ R1.

Remark. In R1 there exists a unique line. It is R1.

Theorem. (On a line) Through every two distinct points a, b ∈ Rn there passes exactly one

line. It is the set {x(t) = (1 − t)a + tb : t ∈ R} = L(a, b), where x : R → Rn is called the

parametric presentation of a line L(a, b).

Proof. Take f : R1 → L(a, b) such that f(t) = x
(

t
ρ(a,b)

)
, t ∈ R. We have for t, t′ ∈ R:

ρ(f(t), f(t′))2 =

[(
1− t

ρ(a, b)

)
a+

t

ρ(a, b)
b−

(
1− t′

ρ(a, b)

)
a− t′

ρ(a, b)
b

]2
=

[
(t− t′)a− (t− t′)b

ρ(a, b)

]2
= (t− t′)2

= ρ(t, t′)2.

Hence f is an isometry, that is, L(a, b) is a line. Moreover, x(0) = a and x(1) = b whence

a, b ∈ L(a, b).

Now we show that L(a, b) is unique. Assume that there is a line K such that a, b ∈ K. We

show that K ⊆ L(a, b).

g : R1 → K – an isometry

There are α, β ∈ R such that g(α) = a, g(β) = b and α < β.

Take c = g(γ) ∈ K such that a 6= c 6= b. Suppose that α < β < γ. Then |β − α| + |γ − β| =

|γ − α|. Hence ρ(b, a) + ρ(c, b) = ρ(c, a), because g is an isometry. It follows∣∣∣∣−→ab ∣∣∣∣+

∣∣∣∣−→bc ∣∣∣∣ =
∣∣∣−→ac ∣∣∣ =

∣∣∣∣−→ab +
−→
bc

∣∣∣∣ ,
so
−→
ab ‖ −→ac . Thus there exists t 6= 0 such that c−a = t(b−a), whence c = (1− t)a+ tb = x(t) ∈

L(a, b).

Similarly when α < γ < β and γ < α < β. Hence K ⊆ L(a, b). Precisely, K = L(a, b). �
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Remark. We will write the following parametric equation of L(a, b):

L = L(a, b) : x(t) = (1− t)a+ tb, t ∈ R.

Definition. a, a, b ∈ Rn, L ⊆ Rn – a line
−→
ab lies on L ⇔

df
a, b ∈ L.

a ‖ L ⇔
df

∨
−→
ab

−→
ab ∈ a ∧

−→
ab lies on L ⇔

∨
a,b∈L

−→
ab ∈ a.

Definition. a ∈ Rn, L ⊆ Rn – a line

A direction of a line L =
df

a direction of a vector a ‖ L.

A direction vector of a line L =
df

a vector a ‖ L.

Theorem. (The second form of the parametric equation of a line in Rn)

a, a ∈ Rn, L ⊆ Rn – a line

Then

a ∈ L ∧ a ‖ L ∧ a 6= 0 ⇒ L : x(t) = a+ ta, t ∈ R.

Proof. a ∈ L, a ‖ L, a 6= 0

By Theorm on localization of a free vector at a point, a vector a can be localized at a point a.

Then there exists a point b ∈ L (because a ‖ L) such that a =

[
−→
ab

]
.

By Theorem on a line for t ∈ R:

L : x(t) = (1− t)a+ tb, so

L : x(t) = a+ t(b− a),

L : x(t) = a+ t

[
−→
ab

]
,

L : x(t) = a+ ta. �

Remark. If a = (a1, . . . , an) ∈ L and a = [α1, . . . , αn] ‖ L, then a parametric equation of

L : x(t) = a+ ta, t ∈ R has a form:

L : x(t) = (a1 + tα1, . . . , an + tαn), t ∈ R.

For example, L : x(t) = (1 + 2t,−1 + 3t), t ∈ R is the line in R2 such that a = (1,−1) ∈ L
and a = [2, 3] ‖ L, and K : y(s) = (−1 + s, 2 − s, 3 + 2s), s ∈ R is the line in R3 such that

a = (−1, 2, 3) ∈ K and a = [1,−1, 2] ‖ K.
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Definition. L,K ⊆ Rn – lines, a ‖ L, b ‖ K

L ‖ K ⇔
df

a ‖ b ⇔
∨
t6=0

b = ta.

L⊥K ⇔
df

a⊥b ⇔ a · b = 0.

Definition. a ∈ R2, L ⊆ R2 – a line

A normal direction of a line L =
df

a direction of a vector a⊥L.

A normal vector of a line L =
df

a vector a⊥L.

Theorem. For every point a ∈ R2 and every nonzero vector a = [α1, α2] there exists in R2 a

unique line, which passes through a with a normal vector a. It is consisted of all points (x1, x2)

satisfying the equation

α0 + α1x1 + α2x2 = 0, where α0 = −a · (a).

That is the linear equation of a line L such that a ∈ L and a⊥L.

Proof. a = (a1, a2) ∈ L, a = [α1, α2]⊥L, b = (x1, x2) ∈ R2

Then

L• •-
a b

6

a

b ∈ L⇔
[
−→
ab

]
⊥a⇔

[
−→
ab

]
· a = 0

⇔ [x1 − a1, x2 − a2] · [α1, α2] = 0

⇔ α1(x1 − a1) + α2(x2 − a2) = 0

⇔ −(a1α1 + a2α2) + α1x1 + α2x2 = 0.

Setting

α0 = −(a1α1 + a2α2) = −a · (a)

we get

L : α0 + α1x1 + α2x2 = 0.

Obviously, such line is unique. �

Theorem. L,K ⊆ R2 – lines, L : α0 + α1x1 + α2x2 = 0, K : β0 + β1x1 + β2x2 = 0

Then

K = L ⇔
∨
t6=0

βi = tαi for i = 0, 1, 2.

K ‖ L ⇔
∨
t6=0

βi = tαi for i = 1, 2.



38

Proof. Easy. �

Definition. L,K ⊆ R2 – lines, a ∈ R2

ρ(a, L) =
df

ρ(a, b), where b ∈ K ∩ L and a ∈ K⊥L

(a distance of a point a and a line L in R2).

Theorem. L ⊆ R2 – a line, L : α0 + α1x1 + α2x2 = 0, a = (a1, a2) ∈ R2

Then

ρ(a, L) =
|α0 + α1a1 + α2a2|√

α2
1 + α2

2

.

Proof. a = [α1, α2]⊥L, x = (x1, x2) ∈ R2. Then L : α0 + x · (a) = 0.

Take a line K such that K : x(t) = a+ta. Then b ∈ K∩L, that is, b = a+t′a and α0+b ·(a) = 0,

whence

α0 + (a+ t′a) · (a) = 0

α0 + a · (a) + t′a2 = 0

t′a2 = −α0 − a · (a)

t′ = −α0 + a · (a)

a2
.

Hence b = a− α0+a·(a)
a2

a and

ρ(a, L) = ρ(a, b) = |b− a|

=

∣∣∣∣a− α0 + a · (a)

a2
a− a

∣∣∣∣
=
|α0 + a · (a)|
|a|2

|a|

=
|α0 + α1a1 + α2a2|√

α2
1 + α2

2

. �

Definition. An equation α0 + α1x1 + α2x2 = 0 of a line L in R2 is called normalized if

a = [α1, α2] is a versor (so |a| = 1).

Conclusion. If α0 + α1x1 + α2x2 = 0 is a normalized equation of a line L in R2 and a =

(a1, a2) ∈ R2, then

ρ(a, L) = |α0 + α1a1 + α2a2| .

Theorem. Every line in R2 has a normalized equation.

Proof. Easy. �
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Theorem. L(a, b) ⊆ R2 – a line, a = (a1, a2), b = (b1, b2) ∈ R2, a 6= b

Then

L(a, b) :

∣∣∣∣∣∣∣
1 a1 a2

1 b1 b2

1 x1 x2

∣∣∣∣∣∣∣ = 0.

Proof.

[
−→
ab

]
= [b1 − a1, b2 − a2] ‖ L(a, b)

It is easy to see that

[b1 − a1, b2 − a2] · [−(b2 − a2), b1 − a1] = 0,

whence

[−(b2 − a2), b1 − a1]⊥L(a, b)

so

L(a, b) : −(a1, a2) · [−(b2 − a2), b1 − a1]− (b2 − a2)x1 + (b1 − a1)x2 = 0.

Hence

L(a, b) : (a2x1 + b1x2 + a1b2)− (b2x1 + a1x2 + a2b1) = 0,

that is,

L(a, b) :

∣∣∣∣∣∣∣
1 a1 a2

1 b1 b2

1 x1 x2

∣∣∣∣∣∣∣ = 0. �

Remark. L,K – lines in R2

L ‖ K ⇒ L = K ∨ L ∩K = ∅,

L ∦ K ⇒ L ∩K is a point.

Definition.

A proper pencil of lines in R2 =
df

the set of all lines which pass through one point

�
�
�
�
�
��
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@@

An improper pencil of lines in R2 =
df

the set of all lines with the same direction
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Remark. Every two different lines in R2 determine a pencil (proper or improper). We use the

following denotation:

P(L,K) = a pencil of lines in R2 determined by lines L,K.

Theorem. (On a pencil of lines in R2)

L : α0 + α1x1 + α2x2 = 0, K : β0 + β1x1 + β2x2 = 0, L 6= K

Then

M ∈ P(L,K)⇔
∨

η,λ∈R, η2+λ2>0

M : η(α0 + α1x1 + α2x2) + λ(β0 + β1x1 + β2x2) = 0.

Proof. First, note that if η2 + λ2 > 0, then an equation

η(α0 + α1x1 + α2x2) + λ(β0 + β1x1 + β2x2) = 0

is a linear equation of some line in R2. Indeed, we have [α1, α2] 6= 0 6= [β1, β2], whence [ηα1 +

λβ1, ηα2 + λβ2] = η[α1, α2] + λ[β1, β2] 6= 0.

(⇒) M ∈ P(L,K), a = (a1, a2) ∈M , a /∈ L ∪K
It suffices to set: η = β0 + β1a1 + β2a2 and λ = −(α0 + α1a1 + α2a2).

(⇐) Assume that∨
η,λ∈R, η2+λ2>0

M : η(α0 + α1x1 + α2x2) + λ(β0 + β1x1 + β2x2) = 0.

We have two cases:

1) P(L,K) is proper.

Then an intersection point of lines L and K satisfies the equation of a line M , that is, M ∈
P(L,K).

2) P(L,K) is improper.

Then
∨
t6=0

[β1, β2] = t[α1, α2] (they are parallel), whence

[ηα1 + λβ1, ηα2 + λβ2] = η[α1, α2] + λ[β1, β2]

= η[α1, α2] + λt[α1, α2]

= (η + λt)[α1, α2],

that is, M ‖ L ‖ K. �
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Remark. Equivalently, we have

M ∈ P(L,K)⇔
∨
λ∈R

M : α0 + α1x1 + α2x2 + λ(β0 + β1x1 + β2x2) = 0

(in this case there does not exist λ such that M = K).

Definition.

Copenciled lines in R2 =
df

lines which belong to one pencil.

Theorem.

L : α0 + α1x1 + α2x2 = 0, K : β0 + β1x1 + β2x2 = 0, M : γ0 + γ1x1 + γ2x2 = 0 – different lines

Lines L,K,M are copenciled ⇔ ∣∣∣∣∣∣∣
α0 β0 γ0

α1 β1 γ1

α2 β2 γ2

∣∣∣∣∣∣∣ = 0.

Proof. M ∈ P(L,K)⇔ there are η, λ, δ ∈ R, η2 + λ2 > 0 such that
ηα0 + λβ0 = −δγ0,
ηα1 + λβ1 = −δγ1,
ηα2 + λβ2 = −δγ2,

which is equivalent to 
ηα0 + λβ0 + δγ0 = 0,

ηα1 + λβ1 + δγ1 = 0,

ηα2 + λβ2 + δγ2 = 0.

That system has a nonzero solution ⇔∣∣∣∣∣∣∣
α0 β0 γ0

α1 β1 γ1

α2 β2 γ2

∣∣∣∣∣∣∣ = 0. �

Definition.

A plane =
df

a subspace of the space Rn isometric with R2.

Definition. a, b, a, b ∈ Rn, P ⊆ Rn – a plane
−→
ab lies on P ⇔

df
a, b ∈ P .

a ‖ P ⇔
df

∨
−→
ab

−→
ab ∈ a ∧

−→
ab lies on P ⇔

∨
a,b∈P

−→
ab ∈ a.

b⊥P ⇔
df

∧
a‖P

b⊥a.
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Definition. P ⊆ R3 – a plane, a ∈ R3

A normal direction of a plane P =
df

a direction of a vector a⊥P .

A normal vector of a plane P =
df

a vector a⊥P .

Definition. P,Q ⊆ R3 – planes, a, b ∈ R3

P ‖ Q ⇔
df

a⊥P ∧ b⊥Q ∧ a ‖ b.

P⊥Q ⇔
df

a⊥P ∧ b⊥Q ∧ a⊥b.

Theorem. For every point a ∈ R3 and every nonzero vector a = [α1, α2, α3] there exists in

R3 a unique plane, which passes through a with a normal vector a. It is consisted of all points

(x1, x2, x3) satisfying the equation

α0 + α1x1 + α2x2 + α3x3 = 0, where α0 = −a · (a).

That is the linear equation of a plane P such that a ∈ P and a⊥P .

Proof. Similar to the proof of theorem on a linear equation of a line. �

Theorem. P,Q ⊆ R3 – planes, P : α0+α1x1+α2x2+α3x3 = 0, Q : β0+β1x1+β2x2+β3x3 = 0

Then

P = Q ⇔
∨
t6=0

βi = tαi for i = 0, 1, 2, 3.

P ‖ Q ⇔
∨
t6=0

βi = tαi for i = 1, 2, 3.

Proof. Easy. �

Definition. P ⊆ R3 – a plane, L ⊆ R3 – a line, a ∈ R3

ρ(a, P ) =
df

ρ(a, b), where b ∈ P ∩ L and a ∈ L⊥P

(a distance of a point a and a plane P in R3).

Theorem. P ⊆ R3 – a plane, P : α0 + α1x1 + α2x2 + α3x3 = 0, a = (a1, a2, a3) ∈ R3

Then

ρ(a, P ) =
|α0 + α1a1 + α2a2 + α3a3|√

α2
1 + α2

2 + α2
3

.

Proof. Similar to the proof of appropriate theorem for a line. �

Definition. An equation α0 + α1x1 + α2x2 + α3x3 = 0 of a plane P in R3 is called normalized

if a = [α1, α2, α3] is a versor (so |a| = 1).

Conclusion. If α0 + α1x1 + α2x2 + α3x3 = 0 is a normalized equation of a plane P in R3 and

a = (a1, a2, a3) ∈ R3, then

ρ(a, P ) = |α0 + α1a1 + α2a2 + α3a3| .
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Theorem. Every plane in R3 has a normalized equation.

Proof. Easy. �

Theorem. P ⊆ R3 – a plane, a = (a1, a2, a3), b = (b1, b2, b3), c = (c1, c2, c3) ∈ R3,
−→
ab ∦ −→ac

Then

P :

∣∣∣∣∣∣∣∣∣
1 a1 a2 a3

1 b1 b2 b3

1 c1 c2 c3

1 x1 x2 x3

∣∣∣∣∣∣∣∣∣ = 0.

Proof. Analogous to that for a line in R2. �

Remark. P,Q ⊆ R3 – planes

P ‖ Q ⇒ P = Q ∨ P ∩Q = ∅,

P ∦ Q ⇒ P ∩Q is a line.

Definition.

A proper pencil of planes in R3 =
df

the set of all planes containing the same line.

An improper pencil of planes in R3 =
df

the set of all planes with the same normal direction.

Remark. Every two different planes in R3 determine a pencil (proper or improper). We use

the following denotation:

P(P,Q) = a pencil of planes in R3 determined by planes P,Q.

Theorem. (On a pencil of planes in R3)

P : α0 + α1x1 + α2x2 + α3x3 = 0, Q : β0 + β1x1 + β2x2 + β3x3 = 0, P 6= Q

Then

R ∈ P(P,Q)⇔
∨

η,λ∈R, η2+λ2>0

R : η(α0 + α1x1 + α2x2 + α3x3) + λ(β0 + β1x1 + β2x2 + β3x3) = 0.

Proof. Analogous to that for a pencil of lines in R2. �

Remark. Equivalently, we have

R ∈ P(P,Q)⇔
∨
λ∈R

R : α0 + α1x1 + α2x2 + α3x3 + λ(β0 + β1x1 + β2x2 + β3x3) = 0

(in this case there does not exist λ such that R = Q).
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Remark. P,Q ⊆ R3 – planes, P ∦ Q

Then P ∩Q = L is a line. If P : α0 +α1x1 +α2x2 +α3x3 = 0, Q : β0 + β1x1 + β2x2 + β3x3 = 0,

then

L :

{
α0 + α1x1 + α2x2 + α3x3 = 0,

β0 + β1x1 + β2x2 + β3x3 = 0.

It is an edge equation of a line L in R3. Then a = [α1, α2, α3]⊥L and b = [β1, β2, β3]⊥L. Hence

a× b ‖ L.

Definition. L ⊆ R3 – a line, P ⊆ R3 – a plane, a ∈ R3

ρ(a, L) =
df

ρ(a, b), where b ∈ L ∩ P and a ∈ P⊥L

(a distance of a point a and a line L in R3).

Theorem. L ⊆ R3 – a line, a, a, b ∈ R3, a ‖ L, a 6= b, b ∈ L

Then

ρ(a, L) =

∣∣∣∣a× [−→ab]∣∣∣∣
|a|

.

Proof. We have

L• • -
aa′ b

ρ(a, L)

•a
S
S
S
S
S
S
Sw

Hence sin

(
^

(
a,

[
−→
ab

]))
= ρ(a,a′)

ρ(a,b) and

ρ(a, L) = ρ(a, a′) = ρ(a, b) sin

(
^

(
a,

[
−→
ab

]))

=

|a|
∣∣∣∣[−→ab]∣∣∣∣ sin(^(a, [−→ab]))

|a|

=

∣∣∣∣a× [−→ab]∣∣∣∣
|a|

. �

Definition. k < n

A k-dimensional hyperplane in Rn =
df

a subspace of the space Rn isometric with Rk.
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Definition. a, b, a, b ∈ Rn, Hn−1 – an (n− 1)-dimensional hyperplane in Rn

a ‖ Hn−1 ⇔
df

∨
−→
ab

−→
ab ∈ a ∧ a, b ∈ Hn−1 ⇔

∨
a,b∈Hn−1

−→
ab ∈ a.

b⊥Hn−1 ⇔
df

∧
a‖Hn−1

b⊥a.

Theorem. For every point a ∈ Rn and every nonzero vector a = [α1, . . . , αn] there exists in

Rn a unique hyperplane Hn−1 such that a ∈ Hn−1 and a⊥Hn−1. It is consisted of all points

(x1, . . . , xn) satisfying the equation

α0 + α1x1 + . . .+ αnxn = 0, where α0 = −a · (a).

That is the linear equation of a hyperplane Hn−1 such that a ∈ Hn−1 and a⊥Hn−1.

Proof. Similar to the proof of theorem on a linear equation of a line. �
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7. Transformations of space Rn

Let f : Rn → Rn be an isometry, that is, f is onto and∧
x,y∈Rn

ρ(f(x), f(y)) = ρ(x, y)

Definition.

An invariant of isometry =
df

a property which is unchanged by isometries.

Theorem. A centre of a segment is an invariant of isometry (that is, if c is a centre of a segment

〈a, b〉, then f(c) is a centre of a segment 〈f(a), f(b)〉).

Proof. f : Rn → Rn – an isometry, a, b, c ∈ Rn

If c is a centre of a segment 〈a, b〉, then

ρ(a, c) = ρ(b, c) =
1

2
ρ(a, b).

Hence

ρ(f(a), f(c)) = ρ(f(b), f(c)) =
1

2
ρ(f(a), f(b)),

that is, f(c) is a centre of a segment 〈f(a), f(b)〉. �

Theorem. An equality of localized vectors is an invariant of isometry.

Proof. Follows from definition of equal vectors and previous theorem. �

Conclusion. f : Rn → Rn – an isometry, a, a, b ∈ Rn

Then
−→
ab ∈ a ⇒ f(a) =

[ −→
f(a)f(b)

]
.

Theorem. f : Rn → Rn – an isometry, a, b ∈ Rn

Then

1) f(0) = 0 (for vectors!),

2) f(a + b) = f(a) + f(b),

3) f(−a) = −f(a),

4) f(a− b) = f(a)− f(b),

5) |f(a)| = |a|.

Proof. 1) Obvious.

2) a, b, c ∈ Rn,
−→
ab ∈ a and

−→
bc ∈ b from theorem on localization of a free vector at a point

Then
−→
ab +

−→
bc =

−→
ac ∈ a + b.
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Hence
−→

f(a)f(c) ∈ f(a + b) and
−→

f(a)f(c) =
−→

f(a)f(b) +
−→

f(b)f(c) ∈ f(a) + f(b).

Thus f(a + b) = f(a) + f(b).

3) 0 = f(0) = f(a + (−a)) = f(a) + f(−a). Hence f(−a) = −f(a).

4) f(a− b) = f(a + (−b)) = f(a) + f(−b) = f(a)− f(b).

5) a, b ∈ Rn,
−→
ab ∈ a

|f(a)| =
∣∣∣∣[ −→
f(a)f(b)

]∣∣∣∣ = ρ(f(a), f(b)) = ρ(a, b) =

∣∣∣∣[−→ab]∣∣∣∣ = |a| . �

Conclusion. The zero vector, an opposite vector, a sum and a difference of vectors and a length

of a vector are invariants of isometry.

Theorem. Parallelism, equally parallelism and oppositely parallelism of vectors are invariants

of isometry.

Proof. Follows from definition of parallelism and previous theorem. �

Conclusion. A direction and a sense of a vector are invariants of isometry, that is, for a ∈ Rn,

f(K(a)) = K(f(a)) and

f(Z(a)) = Z(f(a)).

Theorem. f : Rn → Rn – an isometry, a ∈ Rn, t ∈ R

Then

f(ta) = tf(a).

Proof. Assume t ≥ 0. Then ta �� a, whence f(ta) �� f(a) and tf(a) �� f(a). Thus

f(ta) �� tf(a)

Moreover,

|f(ta)| = |ta| = t |a| = t |f(a)| .

Hence f(ta) = tf(a).

Similarly for t < 0 (in that case parallelism is opposite). �

Conclusion. A linear combination of vectors is an invariant of isometry, that is,

f

(
k∑
i=1

tiai

)
=

k∑
i=1

tif(ai),

where a1, . . . , ak ∈ Rn and t1, . . . , tk ∈ R.

Theorem. A scalar product of vectors is an invariant of isometry, that is, f(a) · f(b) = a · b.

Proof. f : Rn → Rn – an isometry, a, b ∈ Rn



48

We have

(f(a)+f(b))2 = (f(a+b))2 = |f(a + b)|2 = |a + b|2 = (a+b)2 = a2+2a·b+b2 = |a|2+2a·b+|b|2

and

(f(a)+f(b))2 = (f(a))2+2f(a)·f(b)+(f(b))2 = |f(a)|2+2f(a)·f(b)+|f(b)|2 = |a|2+2f(a)·f(b)+|b|2 .

Hence |a|2 + 2a · b + |b|2 = |a|2 + 2f(a) · f(b) + |b|2.

Thus

f(a) · f(b) = a · b. �

Conclusion. A perpendicularity of vectors is an invariant of isometry.

Conclusion. A cosine of an angle between vectors and a measure of an angle between vectors

are invariants of isometry.

Theorem. A k-dimensional hyperplane in Rn (k < n) is an invariant of isometry, that is, if Hk

is a k-dimensional hyperplane, then f(Hk) is a k-dimensional hyperplane.

Proof. Follows from definition of a k-dimensional hyperplane and the fact that a composition

of isometries is an isometry. �

Conclusion. A line and a plane in Rn are invariants of isometry.

Conclusion. A pencil of lines in R2 and a pencil of planes in R3 are invariants of isometry.

Theorem. Parallelism and perpendicularity of lines in Rn and parallelism and perpendicularity

of planes in R3 are invariants of isometry.

Proof. Follows from the fact that parallelism and perpendicularity of vectors are invariants of

isometry. �

Remark. Let us set:

δij =

{
0 if i 6= j,

1 if i = j.

Theorem. (On an analytic form of an isometry) Every isometry f : Rn → Rn is a

transformation given by a formula

f(x) = a+
n∑
i=1

xi · (ai), where ai · aj = δij .

Then f(0) = a and ai = f(ei), where ei = [δi1, δ
i
2, . . . , δ

i
n], i = 1, . . . , n.

Proof. First, note that e1 = [1, 0, 0, . . . , 0], e2 = [0, 1, 0, . . . , 0], . . . , en = [0, 0, 0, . . . , 1]. From

properties of an isometry we know that an isometry is a linear transformation. Hence every

isometry f : Rn → Rn is uniquely determined by its values f(e1), . . . , f(en) in end-points of

vectors e1, . . . , en.
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Now, if x = (x1, . . . , xn) ∈ Rn, then x = 0+x1e1 + . . .+xnen, whence f(x) = f(0)+x1f(e1)+

. . .+ xnf(en). Setting f(0) = a and f(ei) = ai, i = 1, . . . , n we get ai · aj = δij and

f(x) = a+
n∑
i=1

xi · (ai). �

Let f : Rn → Rn be a similarity with the ratio λ > 0, that is, f is onto and∧
x,y∈Rn

ρ(f(x), f(y)) = λρ(x, y)

Definition.

A similarity invariant =
df

a property which is unchanged by similarities.

Remark. Every similarity invariant is an invariant of isometry (since an isometry is a similarity

with the ratio 1). An invariant of isometry is a similarity invariant iff it does not depend on a

distance of points in Rn. Thus we have:

Theorem. Similarity invariants are: a centre of a segment, an equality of localized vectors,

the zero vector, an opposite vector, a sum and a difference of vectors, a parallelism, an equally

parallelism and an oppositely parallelism of vectors, a direction and a sense of a vector, a

linear combination of vectors, a k-dimensional hyperplane in Rn, a line in Rn, a plane in Rn,

a parallelism and a perpendicularity of lines in Rn and a parallelism and a perpendicularity of

planes in R3, a pencil of lines in R2 and a pencil of planes in R3.

Conclusion. f : Rn → Rn – a similarity, a, a, b ∈ Rn

Then
−→
ab ∈ a ⇒ f(a) =

[ −→
f(a)f(b)

]
.

Theorem. f : Rn → Rn – a similarity with the ratio λ > 0, a, b ∈ Rn

Then

1) |f(a)| = λ |a|,
2) f(a) · f(b) = λ2(a · b).

Proof. 1) a, b ∈ Rn,
−→
ab ∈ a

|f(a)| =
∣∣∣∣[ −→
f(a)f(b)

]∣∣∣∣ = ρ(f(a), f(b)) = λρ(a, b) = λ

∣∣∣∣[−→ab]∣∣∣∣ = λ |a| .

2) f(a) + f(b) = f(a + b)

Hence

(f(a) + f(b))2 = (f(a+ b))2 = |f(a + b)|2 = λ2 |a + b|2 = λ2(a+ b)2 = λ2 |a|2 + 2λ2a · b+λ2 |b|2
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and

(f(a) + f(b))2 = (f(a))2 + 2f(a) · f(b) + (f(b))2

= |f(a)|2 + 2f(a) · f(b) + |f(b)|2

= λ2 |a|2 + 2f(a) · f(b) + λ2 |b|2 .

Thus

f(a) · f(b) = λ2a · b. �

Conclusion. A length of a vector and a scalar product of vectors are not similarity invariants.

Theorem. A cosine of an angle between vectors is a similarity invariant.

Proof. f : Rn → Rn – a similarity with the ratio λ > 0, a, b ∈ Rn

By previous theorem we have

f(a) · f(b) = |f(a)| |f(b)| cos(^(f(a), f(b))) = λ2 |a| |b| cos(^(f(a), f(b)))

and

λ2(a · b) = λ2 |a| |b| cos(^(a, b)),

that is,

cos(^(f(a), f(b))) = cos(^(a, b)). �

Conclusion. A measure of an angle between vectors, in particular, a perpendicularity of vectors

are similarity invariants.

Theorem. (On an analytic form of a similarity) Every similarity f : Rn → Rn with the

ratio λ > 0 is a transformation given by a formula

f(x) = a+
n∑
i=1

xi · (ai), where ai · aj = λ2δij .

Then f(0) = a and ai = f(ei), where ei = [δi1, δ
i
2, . . . , δ

i
n], i = 1, . . . , n.

Proof. We have g : Rn → Rn such that g(x) = 1
λf(x), where x ∈ Rn, is an isometry, because

ρ(g(x), g(y))2 = [g(y)− g(x)]2 =
1

λ2
[f(y)− f(x)]2 =

1

λ2
ρ(f(x), f(y))2 = ρ(x, y)2,

that is, ρ(g(x), g(y)) = ρ(x, y), where x, y ∈ Rn.

By theorem on an analytic form of an isometry

g(x) = b+
n∑
i=1

xi · (bi),

where bi · bj = δij , g(0) = b, bi = g(ei) and ei = [δi1, δ
i
2, . . . , δ

i
n]. Hence

f(x) = λg(x) = λb+
n∑
i=1

xi · (λbi).
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Setting a = λb and ai = λbi, i = 1, . . . , n we get

f(x) = a+
n∑
i=1

xi · (ai)

and

ai · aj = (λbi) · (λbj) = λ2(bi · bj) = λ2δij ,

f(0) = λg(0) = λb = a,

ai = λbi = λg(ei) = f(ei),

where ei = [δi1, δ
i
2, . . . , δ

i
n], i = 1, . . . , n. �

Definition. f : Rn → Rn

f is an affine transformation ⇔
df

1) f : Rn onto−→
1−1

Rn,

2)
∧

a,b,a′,b′∈Rn

−→
ab =

−→
a′b′ ⇒

−→
f(a)f(b) =

−→
f(a′)f(b′),

3)
∧

a1,a2∈Rn

∧
t1,t2∈R

f(t1a1 + t2a2) = t1f(a1) + t2f(a2).

Conclusion. f : Rn → Rn – an affine transformation, a, a, b ∈ Rn

Then
−→
ab ∈ a ⇒ f(a) =

[ −→
f(a)f(b)

]
.

Conclusion. Every isometry and every similarity are affine transformations.

Definition. a1, . . . , ak ∈ Rn, t1, . . . , tk ∈ R

Vectors a1, . . . , ak are linearly independent ⇔
df

k∑
i=1

tiai = 0 ⇒ t1 = t2 = . . . = tk = 0.

Theorem. (On an analytic form of an affine transformation) Every affine transformation

f : Rn → Rn is given by a formula

f(x) = a+
n∑
i=1

xi · (ai),

where vectors a1, . . . , an are linearly independent. Then f(0) = a and ai = f(ei), where ei =

[δi1, δ
i
2, . . . , δ

i
n], i = 1, . . . , n.

Proof. For x = (x1, . . . , xn) ∈ Rn we have x = 0 + x1 · (e1) + . . .+ xn · (en).



52

By definition of an affine transformation

f(x) = f(0) + x1 · f(e1) + . . .+ xn · f(en).

Let us set: f(0) = a and f(ei) = ai, i = 1, . . . , n.

Then

f(x) = a+
n∑
i=1

xi · (ai)

and from the fact that f is one-to-one:

f(x) = f(0) ⇒ x = 0,

that is, a+

n∑
i=1

xi · (ai) = a ⇒ x1 = . . . = xn = 0,

so,
n∑
i=1

xi · (ai) = 0 ⇒ x1 = . . . = xn = 0.

Hence vectors a1, . . . , an are linearly independent. �

Theorem. Composition of two affine transformations is an affine transformation.

Proof. Easy. �

Theorem. If f : Rn → Rn is an affine transformation, then f−1 : Rn → Rn is an affine

transformation.

Proof. Easy. �

Definition.

An affine invariant =
df

a property which is unchanged by affine transformations.

Conclusion. Affine invariants are: an equality of localized vectors, a linear combination of

vectors and a parallelism of vectors.

Theorem. f : Rn → Rn – an affine transformation, a, b ∈ Rn, t ∈ R

Then

f((1− t)a+ tb) = (1− t)f(a) + tf(b).

Proof. Easy. It suffices to use an analytic form of an affine transformation. �

Conclusion. A centre of a segment is an affine invariant.

Conclusion. A line in Rn is an affine invariant.

Conclusion. A plane in Rn and a k-dimensional hyperplane in Rn are affine invariants (because

they are unions of lines).

Conclusion. A parallelism of lines in Rn and a parallelism of planes in R3 are affine invariants.
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Remark. Every affine invariant is a similarity invariant (which means that if a property is not

a similarity invariant, then it is not an affine invariant).

Conclusion. A length of a vector and a scalar product of vectors are not affine invariants.

Conclusion. A cosine of an angle between vectors, a measure of an angle between vectors, in

particular, a perpendicularity of vectors are not affine invariants.

Conclusion. Every affine invariant is a similarity invariant and every similarity invariant is an

invariant of isometry.

Definition. A ∈Mn×n(R)

A matrix A is called orthogonal ⇔
df

columns of A are versors in Rn perpendicular to each

other.

Theorem. A ∈Mn×n(R)

The following are equivalent:

1) A is orthogonal,

2) ATA = I,

3) A−1 = AT .

Proof. Easy. �

Conclusion. A,B ∈Mn×n(R) – orthogonal matrices

Then

1) det(A) = ±1,

2) AT is orthogonal,

3) rows of A are versors in Rn perpendicular to each other,

4) A−1 is orthogonal,

5) AB is orthogonal.

Definition. f : Rn → Rn – an isometry (a similarity, an affine transformation)

a = (a01, . . . , a0n), ai = [αi1, . . . , αin] ∈ Rn, i = 1, . . . , n (x1, . . . , xn), (x1, . . . , xn) ∈ Rn

Then

f(x) = a+

n∑
i=1

xi · (ai),

that is,

f(x1, . . . , xn) = (x1, . . . , xn) = (a01, . . . , a0n) + x1[α11, . . . , α1n] + . . .+ xn[αn1, . . . , αnn],
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so 
x1 = a01 + α11x1 + . . .+ αn1xn

x2 = a02 + α12x1 + . . .+ αn2xn
...

xn = a0n + α1nx1 + . . .+ αnnxn

A matrix

Af =
df


α11 . . . αn1

α12 . . . αn2
...

. . .
...

α1n . . . αnn


is called the matrix of an isometry (a similarity, an affine transformation) f .

Theorem. f : Rn → Rn

A transformation f given by the above analytic formula is:

1) an affine transformation ⇔ Af is nonsingular,

2) a similarity with the ratio λ > 0 ⇔ 1
λAf is orthogonal,

3) an isometry ⇔ Af is orthogonal.

Proof. Follows from theorems on an analytic forms of these transformations. �
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8. Algebraic sets in space Rn

Definition. ϕ : Rn → R, x = (x1, . . . , xn) ∈ Rn, i1, . . . , in ∈ {0, . . . , k}, k ∈ N ∪ {0}

ϕ is a monomial in n variables ⇔
df

ϕ(x) = αi1...inx
i1
1 . . . x

in
n .

A degree of a monomial ϕ =
df
i1 + . . .+ in.

ϕ is a polynomial in n variables ⇔
df

ϕ is a sum of monomials.

A degree of a polynomial ϕ =
df

the greatest of degrees of monomials occuring in a polynomial ϕ.

Example.

1. ϕ(x) = 2x21x
3
2 is the monomial of degree 5 in 2 variables.

2. ϕ(x) = x21x2 + 2x22x
2
3 − 3x1x3 + 5x1 − 4 is the polynomial of degree 4 in 3 variables.

Definition. ϕ : Rn → R – a polynomial of degree k

An equation ϕ(x) = 0 is called the algebraic equation of degree k.

Definition. (An algebraic set in Rn)

ϕ : Rn → R – a polynomial, ϕ(x) = 0 – an algebraic equation

An algebraic set =
df

a set of solutions of an algebraic equation,

that is, if F ⊆ Rn, then

F is an algebraic set ⇔
df

[there is a polynomial ϕ : Rn → R such that x ∈ F ⇔ ϕ(x) = 0].

We will write F : ϕ(x) = 0.

A degree of a set F =
df

the least of degrees of algebraic equations describing a set F .

We denote it by deg(F ).

Remarks.

1. Algebraic sets of degree 0 in Rn: ∅ and Rn (since if a polynomial ϕ is of degree 0, then an

equation ϕ(x) = 0 is either contradictory or it is an identity).

2. Algebraic sets of degree 1 in Rn: (n−1)-dimensional hyperplanes (if Hn−1 : α0 +α1x1 + . . .+

αnxn = 0, then ϕ(x1, . . . , xn) = α0 + α1x1 + . . . + αnxn = 0 is an algebraic equation of degree

1).

3. Algebraic sets of degree 2 in R1: 2-point sets (since a polynomial of degree 2 in one variable

has at most 2 roots).

4. Algebraic sets of degree k in R1: k-point sets (since a polynomial of degree k in one variable

has at most k roots).
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Conclusion. A line in R2 and a plane in R3 are algebraic sets of degree 1.

Theorem. (On position of a line under an algebraic set of degree k)

L,F ⊆ Rn, L – a line, F – an algebraic set of degree k

Then

L ⊆ F ∨ L ∩ F ≤ k.

Proof. F : ϕ(x) = 0, ϕ – a polynomial of degree k

By theorem on a line: L : x(t) = (1−t)a+tb, where t ∈ R and a, b ∈ L, that is, L : (x1, . . . , xn) =

a+ (b− a)t, where t ∈ R and a, b ∈ L.

We search all t ∈ R satisfying the following system of equations{
(x1, . . . , xn) = a+ (b− a)t,

ϕ(x1, . . . , xn) = 0.

It is not difficult to see that there are no such t or all t ∈ R satisfy that system or at most k

numbers t satisfy that system. Hence

L ∩ F = ∅ ∨ L ∩ F = L ∨ L ∩ F ≤ {t1, . . . , tk}.

Thus

L ⊆ F ∨ L ∩ F ≤ k. �

Definition.

An transcendental set =
df

a subset of Rn which is not an algebraic set of any degree.

Conclusion. If for a set F ⊆ Rn there exists a line L such that L∩F is a proper infinite subset

of L, then the set F is transcendental.

Example. The sinusoid is a transcendental set.

Theorem. An algebraic set and its degree are affine invariants.

Proof. F : ϕ(x) = 0 – an algebraic set of degree k, f : Rn → Rn – an affine transformation

Then we know that f−1 is also an affine transformation. If f(x1, . . . , xn) = (x1, . . . , xn), then

f−1(x1, . . . , xn) = (x1, . . . , xn). From an analytic form of an affine transformation f−1 we have

formulas for x1, . . . , xn. We set them to the equation ϕ(x1, . . . , xn) = 0 and obtain an algebraic

equation of degree k of an algebraic set F , that is, f(F ) = F . �

Conclusion. An algebraic set and its degree are similarity invariants and also invariants of

isometry.

Conclusion. A transcendental set is an affine invariant (so also a similarity invariant and an

invariant of isometry).
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Definition. a, a′ ∈ Rn, H ⊆ Rn – a hyperplane

a, a′ are symmetric with respect to H ⇔
df

c =
a+ a′

2
∈ H ∧

[−→
aa′
]
⊥H.

Definition. F,H ⊆ Rn, F – an algebraic set, H – a hyperplane

H is a hyperplane of symmetry of F ⇔
df

[a ∈ F ⇒ a′ ∈ F, where a′ is symmetric to a with respect to H].

Remarks.

1. A 0-dimensional hyperplane of symmetry reduces to a point, called the centre of symmetry

of the set F .

2. A 1-dimensional hyperplane of symmetry is a line, called the axis of symmetry of the set F .

Theorem. A centre of symmetry of an algebraic set is an affine invariant.

Proof. Follows directly from definition. �

Remark. An axis of symmetry of an algebraic set is not an affine invariant.

Algebraic sets of degree 2 in R2:

1. A 1-point set.

a = (a1, a2), x = (x1, x2) ∈ R2

Then

{a} : (x1 − a1)2 + (x2 − a2)2 = 0

and ϕ(x) = (x1 − a1)2 + (x2 − a2)2 is a polynomial of degree 2, that is, deg({a}) = 2.

2. A union of two different lines.

L,K ⊆ R2 – lines, x = (x1, x2) ∈ R2

L : α0 + α1x1 + α2x2 = 0, K : β0 + β1x1 + β2x2 = 0

Then

x ∈ L ∪K ⇔ α0 + α1x1 + α2x2 = 0 ∨ β0 + β1x1 + β2x2 = 0

⇔ (α0 + α1x1 + α2x2)(β0 + β1x1 + β2x2) = 0.

So

L ∪K : (α0 + α1x1 + α2x2)(β0 + β1x1 + β2x2) = 0
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and ϕ(x) = (α0+α1x1+α2x2)(β0+β1x1+β2x2) is a polynomial of degree 2, that is, deg(L∪K) =

2.

3. A circle.

a = (a1, a2) ∈ R2 – a centre, r > 0 – a radius, x = (x1, x2) ∈ R2

A circle is defined in the following way:

S = S(a, r) =
df
{x ∈ R2 : ρ(x, a) = r}.

Hence

x ∈ S ⇔ ρ(x, a) = r ⇔ [ρ(x, a)]2 = r2

⇔ (x1 − a1)2 + (x2 − a2)2 = r2.

So

S : (x1 − a1)2 + (x2 − a2)2 − r2 = 0

and ϕ(x) = (x1 − a1)2 + (x2 − a2)2 − r2 is a polynomial of degree 2, that is, deg(S) = 2.

4. A conic.

Definition. (Conic)

a ∈ R2, K ⊆ R2 – a line, a /∈ K, e > 0

The set

S(a,K, e) =
df
{x ∈ R2 : ρ(x, a) = e · ρ(x,K)}

is called the conic. Then, a – a focus, K – a directrix, e – an eccentric.

Let us take such a coordinate system that the x1-axis passes through the focus a and it is

perpendicular to the directrix K, that is, a = (u, 0), K : x1 − v = 0 and |u− v| = d:
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Then

ρ(x, a) = e · ρ(x,K) ⇔ [ρ(x, a)]2 = e2 · [ρ(x,K)]2,

that is,

(x1 − u)2 + x22 = e2(x1 − v)2.

Hence

S(a,K, e) : (1− e2)x21 + x22 + 2(e2v − u)x1 + (u2 − e2v2) = 0

and ϕ(x) = (1 − e2)x21 + x22 + 2(e2v − u)x1 + (u2 − e2v2) is a polynomial of degree 2, that is,

deg(S(a,K, e)) = 2.

Theorem. A conic, its focus, directrix and eccentric are invariants of isometry.

Proof. f : R2 → R2 – an isometry

S(a,K, e) = {x ∈ R2 : ρ(x, a) = e · ρ(x,K)} – a conic, a – a focus, K – a directrix, e – an

eccentric

Then f(K) is a line and

ρ(f(x), f(a)) = ρ(x, a) = e · ρ(x,K) = e · ρ(f(x), f(K)).

Hence

f(S(a,K, e)) = S(f(a), f(K), e) = {y = f(x) ∈ R2 : ρ(y, f(a)) = e · ρ(y, f(K))}

is a conic which has a focus f(a), a directrix f(K) and an eccentric e. �

Exercise. Show that a conic, its focus, directrix and eccentric are similarity invariants.
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Definition.

A conic S(a,K, e) is : 1) an ellipse if e < 1,

2) a parabola if e = 1,

3) a hyperbola if e > 1.

We know that a = (u, 0), K : x1 − v = 0, |u− v| = d and

S(a,K, e) : (1− e2)x21 + x22 + 2(e2v − u)x1 + (u2 − e2v2) = 0.

Parabola P :

e = 1, let u = 1
2d and v = −1

2d

Then

P : x22 + 2(v − u)x1 + (u2 − v2) = 0,

that is,

P : x22 − 2dx1 = 0.

That is the canonical equation of a parabola.

It is easy to see that a parabola has one axis of symmetry: in canonical position the x1-axis;

does not have centres of symmetry; has a vertex, so a point of intersection of a parabola and

its axis of symmetry: in canonical position point (0, 0); has one focus: in canonical position

a = (d2 , 0) and has one directrix: in canonical position K : x1 + d
2 = 0.

-

6
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x2
K

•
a

•

�����

a vertex of a parabola

P
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Ellipse E:

e < 1, let v − u = d and u− e2v = 0

Hence

u =
e2d

1− e2
, v =

d

1− e2
and u, v > 0.

Then

u2 − e2v2 =
(e2d)2

(1− e2)2
− e2d2

(1− e2)2
= −ud.

Thus

E :
(1− e2)x21

ud
+
x22
ud

= 1.

Set: α1 =
√

ud
1−e2 and α2 =

√
ud, where

α1 =
ed

1− e2
> 0, α2 =

ed√
1− e2

= α1

√
1− e2 < α1.

Then

E :
x21
α2
1

+
x22
α2
2

= 1.

That is the canonical equation of an ellipse.

It is easy to see that an ellipse has two axes of symmetry: in canonical position the coordinate

axes; has one centre of symmetry: in canonical position point (0, 0); has two foci: in canonical

position a = (
√
α2
1 − α2

2, 0) and a′ = (−
√
α2
1 − α2

2, 0) and has two directrices: in canonical

position K : x1 −
α2
1√

α2
1−α2

2

= 0 and K ′ : x1 +
α2
1√

α2
1−α2

2

= 0. Moreover the eccentric e =

√
α2
1−α2

2

α1
.

-
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•
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Q
Q
Q
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a major axis of an ellipse
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Remark. A circle is an ellipse (with α1 = α2).

Hyperbola H:

e > 1, let v − u = d and u− e2v = 0

Hence

u =
e2d

1− e2
, v =

d

1− e2
and u, v < 0.

Then

u2 − e2v2 = −ud.

Thus

H :
(1− e2)x21

ud
+
x22
ud

= 1.

Setting α1 =
√

ud
1−e2 and α2 =

√
−ud, where

α1 =
ed

e2 − 1
< −u, α2 =

ed√
e2 − 1

= α1

√
e2 − 1 > α1,

we have

H :
x21
α2
1

− x22
α2
2

= 1.

That is the canonical equation of a hyperbola.

It is easy to see that a hyperbola has two axes of symmetry: in canonical position the coordinate

axes; has one centre of symmetry: in canonical position point (0, 0); has two foci: in canonical

position a = (
√
α2
1 + α2

2, 0) and a′ = (−
√
α2
1 + α2

2, 0) and has two directrices: in canonical

position K : x1 −
α2
1√

α2
1+α

2
2

= 0 and K ′ : x1 +
α2
1√

α2
1+α

2
2

= 0. Moreover the eccentric e =

√
α2
1+α

2
2

α1
.
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Theorem. All parabolas are similar.

Proof. Take a similarity f : R2 → R2 such that

f(x) = λx, where λ > 0,

that is,

(x1, x2) = f(x1, x2) = (λx1, λx2).

Take a parabola P : x22 − 2dx1 = 0.

Then

(λx2)
2 − 2λd · (λx1) = 0.

Hence P ′ : x22 − 2λdx1 = 0 and λd = d′ ⇒ λ = d′

d .

Thus the similarity f transforms the parabola P onto the parabola P ′. �

Theorem. All ellipses are identical from the affine point of view.

Proof. Take an affine transformation f : R2 → R2 such that

(x1, x2) = f(x1, x2) = (x1,
√

1− e2 x2), 0 < e < 1.

It is seen that f transforms the circle S(0, α1) : x21 +x22 = α2
1 onto the ellipse E : x21 +

x22
1−e2 = α2

1,

that is, onto the ellipse E :
x21
α2
1

+
x22
α2
2

= 1 (since α2 = α1

√
1− e2). Hence every ellipse is an affine

image of the circle. Thus all ellipses are identical from the affine point of view. �

Theorem. All hyperbolas are identical from the affine point of view.
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Proof. Take an affine transformation f : R2 → R2 such that

(x1, x2) = f(x1, x2) = (α1x1, α2x2).

It is seen that f transforms the hyperbola H0 : x21−x22 = 1 onto the hyperbola H :
x21
α2
1
− x22

α2
2

= 1.

Hence every hyperbola is an affine image of the hyperbola H0. Thus all hyperbolas are the same

from the affine point of view. �

Algebraic sets of degree 2 in R3:

1. A 1-point set.

a = (a1, a2, a3), x = (x1, x2, x3) ∈ R3

Then

{a} : (x1 − a1)2 + (x2 − a2)2 + (x3 − a3)2 = 0

and ϕ(x) = (x1−a1)2 +(x2−a2)2 +(x3−a3)2 is a polynomial of degree 2, that is, deg({a}) = 2.

2. A sphere.

a = (a1, a2, a3) ∈ R3 – a centre, r > 0 – a radius, x = (x1, x2, x3) ∈ R3

A sphere is defined in the following way:

S = S(a, r) =
df
{x ∈ R3 : ρ(x, a) = r}.

Hence

x ∈ S ⇔ ρ(x, a) = r ⇔ [ρ(x, a)]2 = r2

⇔ (x1 − a1)2 + (x2 − a2)2 + (x3 − a3)2 = r2.

So

S : (x1 − a1)2 + (x2 − a2)2 + (x3 − a3)2 − r2 = 0

and ϕ(x) = (x1−a1)2+(x2−a2)2+(x3−a3)2−r2 is a polynomial of degree 2, that is, deg(S) = 2.

3. A line.

L ⊆ R3 – a line, x = (x1, x2, x3) ∈ R3

L :

{
α0 + α1x1 + α2x2 + α3x3 = 0,

β0 + β1x1 + β2x2 + β3x3 = 0.

Hence

L : (α0 + α1x1 + α2x2 + α3x3)
2 + (β0 + β1x1 + β2x2 + β3x3)

2 = 0

and ϕ(x) = (α0 + α1x1 + α2x2 + α3x3)
2 + (β0 + β1x1 + β2x2 + β3x3)

2 is a polynomial of degree

2, that is, deg(L) = 2.
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4. A union of two different planes.

P,Q ⊆ R3 – planes, x = (x1, x2, x3) ∈ R3

P : α0 + α1x1 + α2x2 + α3x3 = 0, Q : β0 + β1x1 + β2x2 + β3x3 = 0

Then

x ∈ P ∪Q ⇔ α0 + α1x1 + α2x2 + α3x3 = 0 ∨ β0 + β1x1 + β2x2 + β3x3 = 0

⇔ (α0 + α1x1 + α2x2 + α3x3)(β0 + β1x1 + β2x2 + β3x3) = 0.

So

P ∪Q : (α0 + α1x1 + α2x2 + α3x3)(β0 + β1x1 + β2x2 + β3x3) = 0

and ϕ(x) = (α0 + α1x1 + α2x2 + α3x3)(β0 + β1x1 + β2x2 + β3x3) is a polynomial of degree 2,

that is, deg(P ∪Q) = 2.

Definition. (Set of revolution)

M,X ⊆ R3, M – a line, P (x) – a plane such that x ∈ P (x)⊥M , P (x) ∩M = p(x)

S(x) = {y ∈ P (x) : ρ(y, p(x)) = ρ(x, p(x))} – a circle in the plane P (x) with centre p(x) and

passing through x

The set

S(X,M) =
df

⋃
x∈X

S(x)

is called the set of revolution. Then M is the axis of revolution.

M

X

•p(x)

•x
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Theorem. (On an equation of a set of revolution)

F ⊆ R3, F :

{
ϕ(x2, x3) = 0,

x1 = 0,
L3 = x3-axis

Then

S(F,L3) : ϕ

(√
x21 + x22 , x3

)
· ϕ
(
−
√
x21 + x22 , x3

)
= 0.

If L3 is an axis of symmetry of F , then

S(F,L3) : ϕ

(√
x21 + x22 , x3

)
= 0.

Proof. We have the situation:

-
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x2

x3

F

Let x = (x1, x2, x3) ∈ R3, P : x1 = 0.

Then

x ∈ S(F,L3)⇔ S(x) ∩ P =

{
y =

(
0,
√
x21 + x22 , x3

)
, z =

(
0,−

√
x21 + x22 , x3

)
∧ (y ∈ F ∨ z ∈ F )

}
.

Hence

x ∈ S(F,L3) ⇔ ϕ

(√
x21 + x22 , x3

)
= 0 ∨ ϕ

(
−
√
x21 + x22 , x3

)
= 0

⇔ ϕ

(√
x21 + x22 , x3

)
· ϕ
(
−
√
x21 + x22 , x3

)
= 0.
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Thus

S(F,L3) : ϕ

(√
x21 + x22 , x3

)
· ϕ
(
−
√
x21 + x22 , x3

)
= 0.

If L3 is an axis of symmetry of F , then

ϕ

(√
x21 + x22 , x3

)
= 0 ⇔ ϕ

(
−
√
x21 + x22 , x3

)
= 0.

Hence

S(F,L3) : ϕ

(√
x21 + x22 , x3

)
= 0. �

Cylinder of revolution:

Definition.

A cylinder of revolution =
df

a set built by revolution of a line about a line parallel to it (and

different).

Let r > 0 and L3 = x3-axis. Take a line

L :

{
x2 = r,

x1 = 0,

that is,

L :

{
ϕ(x2, x3) = x2 − r = 0,

x1 = 0

and revolve it about the axis L3:

-
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From theorem on an equation of a set of revolution we have

W = S(L,L3) :

(√
x21 + x22 − r

)(
−
√
x21 + x22 − r

)
= 0, that is,

W : x21 + x22 − r2 = 0.

Hence

W : x21 + x22 = r2.

That is the canonical equation of a cylinder of revolution. Then L is called a rectilinear generator

of a cylinder.

Remark. Above equation is an equation of a circle lying in the plane P : x3 = 0. Therefore we

can define a cylinder of revolution in the following way.

A cylinder of revolution =
df

a union of all lines (rectilinear generators) intersecting this circle

and perpendicular to P .

Definition. (Cylinder over a planar set)

P, F ⊆ R3, P – a plane, F ⊆ P

A cylinder over F =
df

a union of all lines (rectilinear generators) intersecting F and perpen-

dicular to P .

Thus:

A cylinder of revolution = a cylinder over a circle.

An elliptic cylinder =
df

a cylinder over an ellipse.

A parabolic cylinder =
df

a cylinder over a parabola.

A hyperbolic cylinder =
df

a cylinder over a hyperbola.

Theorem. (On an equation of a cylinder over a planar set)

F ⊆ R3, F :

{
ϕ(x1, x2) = 0,

x3 = 0.

Then a cylinder over F has an equation:

WF : ϕ(x1, x2) = 0.

Proof. Obvious. �

An elliptic cylinder WE:

WE :
x21
α2
1

+
x22
α2
2

= 1 − the canonical equation
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an ellipse

A parabolic cylinder WP :

WP : x22 = 2dx1 − the canonical equation

-
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A hyperbolic cylinder WH:

WH :
x21
α2
1

− x22
α2
2

= 1 − the canonical equation
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Theorem. (On generators of a cylinder)

If W is a cylinder of revolution (or an elliptic cylinder or a parabolic cylinder or a hyperbolic

cylinder), then through every x ∈W passes exactly one rectilinear generator of the cylinder W .

Proof. W – a cylinder in canonical position, x ∈W , L – a generator of W such that x ∈ L

P : x3 = 0, P ∩W = a circle or a conic

Suppose that there is a generator L′ of W such that x ∈ L′ and L′ 6= L. Let

P ′ =
⋃
{K : K ∩ L′ 6= ∅ ∧K is a generator of W}.

Then P ′ is a plane such that P ′ ⊆ W and P ∩ P ′ is a line. But P ∩ P ′ ⊆ P ∩W . We get a

contradiction. �

Theorem. All cylinders of revolution and elliptic cylinders are identical from the affine point

of view.

Proof. Follows directly from the fact that all ellipses and circles are identical from the affine

point of view. �

Cone of revolution:

Definition.

A cone of revolution =
df

a set built by revolution of a line L about a line M under the

assumption L ∩M = 1 and ∼ L⊥M .
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Let α ∈ R and M = L3 = x3-axis. Take a line

L :

{
x3 = αx2,

x1 = 0,

that is,

L :

{
ϕ(x2, x3) = x3 − αx2 = 0,

x1 = 0

and revolve it about M :

-

6

�
�

�
�
�

�
�

�
�
�	

Mx1

x2

x3

From theorem on an equation of a set of revolution we have

S = S(L,L3) :

(
x3 − α

√
x21 + x22

)(
x3 + α

√
x21 + x22

)
= 0, that is,

S : x23 − α2
(
x21 + x22

)
= 0.

Hence

S : α2
(
x21 + x22

)
= x23.

That is the canonical equation of a cone of revolution. Then L∩M is called a vertex of a cone,

and any line passing through a vertex = a rectilinear generator of a cone. If α = 0, then a cone

reduces to the plane x3 = 0. If α = 1, then S : x21 + x22 = x23 is the unit cone.

Theorem. A cone of revolution in canonical position is symmetric with respect to each of the

coordinate planes and also with respect to each coordinate axes. Moreover a vertex of a cone is

its centre of symmetry.
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Proof. Follows from the form of a canonical equation of a cone. �

Take the unit cone S : x21 + x22 = x23 and the affine transformation f : R3 → R3 such that

f(x1, x2, x3) = (α1x1, α2x2, x3), where α1, α2 > 0 and α1 6= α2.

Then f transforms S onto the set

SE :
x21
α2
1

+
x22
α2
2

= x23.

That is the canonical equation of an elliptic cone.

Conclusion. All cones of revolution and elliptic cones are identical from the affine point of

view.

Theorem. (On generators of a cone)

If S is a cone of revolution (or an elliptic cone), then through every x ∈ S distinct from a vertex

passes exactly one rectilinear generator of the cone S.

Proof. Obvious. �

Definition. (Ruled set)

A ruled set is a set which is a union of lines.

Theorem. (On characterization of ruled sets) X ⊆ R3

X is a ruled set ⇔
∧
x∈X

∨
L−a line

x ∈ L ⊆ X.

Proof.

(⇒) X =
⋃
t∈T

Lt, {Lt : t ∈ T} – a set of lines, x ∈ X

Then x ∈
⋃
t∈T

Lt, whence
∨
t∈T

x ∈ Lt ⊆ X.

(⇐)
∧
x∈X

∨
L−a line

x ∈ L ⊆ X, that is,

∧
x∈X

∨
Lx−a line

x ∈ Lx ⊆ X.

Take {Lx}x∈X . Then X =
⋃
x∈X

Lx. Thus X is a ruled set. �

Theorem. The notion of a ruled set is an affine invariant.

Proof. f : R3 → R3 – an affine transformation, X =
⋃
t∈T

Lt, {Lt : t ∈ T} – a set of lines

Then

f(X) = f

(⋃
t∈T

Lt

)
=
⋃
t∈T

f(Lt)
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and {f(Lt)}t∈T is a set of lines. Thus f(X) is a ruled set. �

Conclusion. All cylinders and cones are ruled sets.

Remark. Note that every conic can be obtained as a section of a cone of revolution by some

plane. Therefore the parabolas, ellipses and hyperbolas have the common name of conics.

We also have other definitions of a cylinder of revolution and a cone of revolution:

1. M ⊆ R3 – a line, r > 0

A cylinder of revolution can also be defined in the following way:

W (M, r) =
df
{x ∈ R3 : ρ(x,M) = r}.

2. a, a ∈ R3, a 6= 0, 0 < β < π
2

A cone of revolution can also be defined in the following way:

S(a, a, β) =
df
{x ∈ R3 : x = a ∨ ^(a, [x− a]) = β ∨ ^(a, [x− a]) = π − β}.

Ellipsoid:

Definition.

An ellipsoid of revolution =
df

a set built by revolution of an ellipse about one of its axes of

symmetry.

An ellipsoid of revolution is called prolate when the revolution is about the major axis of an

ellipse, and oblate when the revolution is about the minor axis of an ellipse.

Let L3 = x3-axis. Take an ellipse

E :

{
x22
α2
2

+
x23
α2
3

= 1,

x1 = 0,

that is,

E :

{
ϕ(x2, x3) =

x22
α2
2

+
x23
α2
3
− 1 = 0,

x1 = 0

and revolve it about the axis L3:
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From theorem on an equation of a set of revolution we have

S(E,L3) :
x21 + x22
α2
2

+
x23
α2
3

= 1

That is the canonical equation of an ellipsoid of revolution. If 0 < α2 < α3, then an ellipsoid of

revolution is prolate, and if 0 < α3 < α2, then an ellipsoid of revolution is oblate.

Take the affine transformation f : R3 → R3 such that

f(x1, x2, x3) =

(
α1

α2
x1, x2, x3

)
, where α1, α2 > 0 and α1 6= α2.

Then f transforms an ellipsoid of revolution onto the set

x21
α2
1

+
x22
α2
2

+
x23
α2
3

= 1.

That is the canonical equation of a three-axis ellipsoid (simply, an ellipsoid).

Moreover, the affine transformation g : R3 → R3 such that

g(x1, x2, x3) =

(
1

α1
x1,

1

α2
x2,

1

α3
x3

)
transforms an ellipsoid into the sphere with the equation x21 + x22 + x23 = 1.

Conclusion. All ellipsoids and spheres are identical from the affine point of view.

Theorem. An ellipsoid in canonical position is symmetric with respect to each coordinate plane

and each coordinate axis, and with respect to the origin.



75

Proof. Follows from the form of the canonical equation of an ellipsoid. �

Remark. Points (α1, 0, 0), (−α1, 0, 0), (0, α2, 0), (0,−α2, 0), (0, 0, α3) and (0, 0,−α3) are called

vertices of an ellipsoid with the equation

x21
α2
1

+
x22
α2
2

+
x23
α2
3

= 1.

Theorem. An ellipsoid of revolution (a three-axis ellipsoid) is not a ruled set.

Proof. Follows from the form of the canonical equation of an ellipsoid and theorem on charac-

terization of ruled sets. �

Hyperboloid of one sheet:

Definition.

A hyperboloid of revolution of one sheet =
df

a set built by revolution of a hyperbola about an

axis of symmetry which does not intersect a hyperbola.

Let L3 = x3-axis. Take a hyperbola

H :

{
x22
α2
2
− x23

α2
3

= 1,

x1 = 0,

that is,

H :

{
ϕ(x2, x3) =

x22
α2
2
− x23

α2
3
− 1 = 0,

x1 = 0

and revolve it about the axis L3:
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From theorem on an equation of a set of revolution we have

S(H,L3) :
x21 + x22
α2
2

− x23
α2
3

= 1

That is the canonical equation of a hyperboloid of revolution of one sheet.

Take the affine transformation f : R3 → R3 such that

f(x1, x2, x3) =

(
α1

α2
x1, x2, x3

)
, where α1, α2 > 0 and α1 6= α2.

Then f transforms a hyperboloid of revolution of one sheet onto the set

H1 :
x21
α2
1

+
x22
α2
2

− x23
α2
3

= 1.

That is the canonical equation of a hyperboloid of one sheet.

Moreover, the affine transformation g : R3 → R3 such that

g(x1, x2, x3) =

(
1

α1
x1,

1

α2
x2,

1

α3
x3

)
transforms a hyperboloid of one sheet into the hyperboloid of one sheet with the equation

x21 + x22 − x23 = 1.

Conclusion. All hyperboloids of one sheet are identical from the affine point of view.

Theorem. A hyperboloid of one sheet in canonical position is symmetric with respect to each

coordinate plane and each coordinate axis, and with respect to the origin.
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Proof. Follows from the form of the canonical equation of a hyperboloid of one sheet. �

Theorem. F ⊆ R3 – an algebraic set

F is a hyperboloid of revolution of one sheet iff it is a set built by revolution of a line L about

a line M such that L ∩M = ∅ and ∼ L⊥M .

Proof. Let M = L3 = x3-axis and

L :

{
x2 = a,

x1 = bx3, b 6= 0.

Then a set built by revolution of L about M is a union of circles lying on planes x3 = t, with

centres on M and intersecting L, that is, the set:

F =

{
(x1, x2, x3) ∈ R3 :

∨
t∈R

x3 = t ∧ x21 + x22 = a2 + (bt)2

}
.

Hence

F : x21 + x22 − b2x23 = a2.

Setting a = α2 and b = α2
α3

we get a canonical equation of a hyperboloid of revolution of one

sheet. �

Remark. The same hyperboloid of revolution of one sheet can be obtained by taking the line

L′ :

{
x2 = a,

x1 = −bx3, b 6= 0

instead of L.

Conclusion. Through every point of a hyperboloid of one sheet there pass two lines which lie

entirely on it.

Conclusion. A hyperboloid of one sheet is a ruled set.

Hyperboloid of two sheets:

Definition.

A hyperboloid of revolution of two sheets =
df

a set built by revolution of a hyperbola about its

axis of symmetry which intersects a hyperbola.

Let L3 = x3-axis. Take a hyperbola

H :

{
− x22
α2
2

+
x23
α2
3

= 1,

x1 = 0,
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that is,

H :

{
ϕ(x2, x3) = − x22

α2
2

+
x23
α2
3
− 1 = 0,

x1 = 0

and revolve it about the axis L3:

-
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From theorem on an equation of a set of revolution we have

S(H,L3) :
x21 + x22
α2
2

− x23
α2
3

= −1

That is the canonical equation of a hyperboloid of revolution of two sheets.

Take the affine transformation f : R3 → R3 such that

f(x1, x2, x3) =

(
α1

α2
x1, x2, x3

)
, where α1 > 0.

Then f transforms a hyperboloid of revolution of two sheets onto the set

H2 :
x21
α2
1

+
x22
α2
2

− x23
α2
3

= −1.

That is the canonical equation of a hyperboloid of two sheets.

Moreover, the affine transformation g : R3 → R3 such that

g(x1, x2, x3) =

(
1

α1
x1,

1

α2
x2,

1

α3
x3

)
transforms it into the hyperboloid of two sheets with the equation x21 + x22 − x23 = −1.
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Conclusion. All hyperboloids of two sheets are identical from the affine point of view.

Theorem. A hyperboloid of two sheets in canonical position is symmetric with respect to each

coordinate plane and each coordinate axis, and with respect to the origin.

Proof. Follows from the form of the canonical equation of a hyperboloid of two sheets. �

Theorem. A hyperboloid of two sheets is not a ruled set.

Proof. Since the notion of a ruled set is an affine invariant, it suffices to show that a hyperboloid

of revolution of two sheets H2 : x21 + x22 − x23 = −1 is not a ruled set. We show that through

point a = (0, 0, 1) does not pass any generator L of the hyperboloid H2.

Let L = {a+ ta : t ∈ R}, where a = [α1, α2, α3] 6= [0, 0, 0]. Suppose that L ⊆ H2. Then∧
t∈R

(tα1)
2 + (tα2)

2 − (1 + tα3)
2 = −1,

that is, ∧
t∈R

t2(α2
1 + α2

2 − α2
3)− 2tα3 = 0.

Hence α2
1 + α2

2 − α2
3 = 0 and α3 = 0, that is, a = [0, 0, 0]. We get a contradiction. �

Elliptic paraboloid:

Definition.

A paraboloid of revolution =
df

a set built by revolution of a parabola about its axis of symmetry.

Let L3 = x3-axis. Take a parabola

P :

{
x22
α2
2

= 2x3,

x1 = 0,

that is,

P :

{
ϕ(x2, x3) =

x22
α2
2
− 2x3 = 0,

x1 = 0

and revolve it about the axis L3:
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From theorem on an equation of a set of revolution we have

S(P,L3) :
x21 + x22
α2
2

= 2x3.

That is the canonical equation of a paraboloid of revolution.

Take the affine transformation f : R3 → R3 such that

f(x1, x2, x3) =

(
α1

α2
x1, x2, x3

)
, where α1 > 0.

Then f transforms a paraboloid of revolution onto the set

PE :
x21
α2
1

+
x22
α2
2

= 2x3.

That is the canonical equation of an elliptic paraboloid.

Moreover, the affine transformation g : R3 → R3 such that

g(x1, x2, x3) =

(
1

α1
x1,

1

α2
x2, x3

)
transforms it into the paraboloid of revolution with the equation x21 + x22 = 2x3.

Conclusion. All paraboloids of revolution and elliptic paraboloids are identical from the affine

point of view.

Theorem. A paraboloid of revolution (an elliptic paraboloid) in canonical position is symmetric

with respect to the planes x1 = 0 and x2 = 0, and with respect to the x3-axis.
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Proof. Follows from the form of the canonical equation of a paraboloid. �

Remark. The intersecting point of a paraboloid with its axis of symmetry is called the vertex

of a paraboloid.

Theorem. A paraboloid of revolution (an elliptic paraboloid) does not have a centre of sym-

metry.

Proof. In fact, such centre could not be different from the vertex, since the point symmetric

to the vertex would also have to be a vertex. But the vertex is not a centre of symmetry,

since points (0, α2,
1
2) and (0,−α2,−1

2) are symmetric with respect to the vertex (0, 0, 0) of a

paraboloid in canonical position. The first of them lies on the paraboloid, while the other one

does not. �

Theorem. A paraboloid of revolution (an elliptic paraboloid) is not a ruled set.

Proof. Similar to that of a hyperboloid of two sheets. �

Hyperbolic paraboloid:

Q1, Q2 ⊆ R3 – planes, Q1⊥Q2, P1, P2 ⊆ R3 – parabolas, P1 ⊆ Q1, P2 ⊆ Q2

a ∈ R3 – a common vertex of parabolas P1 and P2

L ⊆ R3 – a common axis of symmetry of parabolas P1 and P2

b ∈ P2, fb : R3 → R3 – a translation given by

fb(x) = x+ (b− a).

We have: fb(a) = b and fb(P1) is a parabola.

Definition.

A hyperbolic paraboloid :

PH =
df

⋃
b∈P2

fb(P1).
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Let Q1 : x2 = 0, Q2 : x1 = 0, a = (0, 0, 0), L = L3 = x3-axis.

Then

P1 :

{
x21 − 2α2

1x3 = 0,

x2 = 0
and P2 :

{
x22 + 2α2

2x3 = 0,

x1 = 0,

that is,

P1 :

{
x3 =

x21
2α2

1
,

x2 = 0
and P2 :

{
x3 = − x22

2α2
2
,

x1 = 0

and fb(x) = x+ b, where b ∈ P2.

Hence

PH =
⋃
b∈P2

fb(P1) =

{
(x1, x2, x3) ∈ R3 : x3 =

x21
2α2

1

− x22
2α2

2

}
.

Thus

PH :
x21
α2
1

− x22
α2
2

= 2x3.

That is the canonical equation of a hyperbolic paraboloid.

Remark. Another name of a hyperbolic paraboloid is a saddle surface or simply a saddle.

Take the affine transformation f : R3 → R3 such that

f(x1, x2, x3) =

(
1

α1
x1,

1

α2
x2, x3

)
.
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Then f transforms a hyperbolic paraboloid onto a hyperbolic paraboloid with the equation

x21 − x22 = 2x3.

Conclusion. All hyperbolic paraboloids are identical from the affine point of view.

Theorem. A hyperbolic paraboloid in canonical position is symmetric with respect to the

planes x1 = 0 and x2 = 0, and with respect to the x3-axis.

Proof. Follows from the form of the canonical equation of a paraboloid. �

Remark. The point (0, 0, 0) is called the vertex of a hyperbolic paraboloid in canonical position.

Theorem. A hyperbolic paraboloid does not have a centre of symmetry.

Proof. Similar to that of an elliptic paraboloid. �

Theorem. A hyperbolic paraboloid is a ruled set.

Proof. It suffices to show that the hyperbolic paraboloid PH : x21 − x22 = 2x3 is a ruled set.

Remark that

PH :

∣∣∣∣∣ x1 − x2 x3

2 x1 + x2

∣∣∣∣∣ = 0.

Hence

(x1, x2, x3) ∈ PH ⇔
∨

α,β∈R,α2+β2>0

{
α(x1 − x2) + βx3 = 0,

2α+ β(x1 + x2) = 0
(proportional columns)

and

(x1, x2, x3) ∈ PH ⇔
∨

γ,δ∈R,γ2+δ2>0

{
γ(x1 − x2) + 2δ = 0,

γx3 + δ(x1 + x2) = 0
(proportional rows).

The first system is the edge equation of some line Lαβ, since a1 = [α,−α, β]⊥Lαβ, a2 =

[β, β, 0]⊥Lαβ and a1 ∦ a2 (since (α, β) 6= (0, 0)). Similarly, the second system describes some

line Lγδ. Thus

x ∈ PH ⇔
∨

α,β∈R,α2+β2>0

x ∈ Lαβ ⇔
∨

γ,δ∈R,γ2+δ2>0

x ∈ Lγδ,

whence

PH =
⋃

α,β∈R,α2+β2>0

Lαβ and PH =
⋃

γ,δ∈R,γ2+δ2>0

Lγδ.

Thus a hyperbolic paraboloid is a ruled set. �

Conclusion. Through every point of a hyperbolic paraboloid there pass two lines which lie

entirely on it.

Remark. Ellipsoids, hyperboloids of one and two sheets and elliptic and hyperbolic paraboloids

together are called quadrics.
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Conclusion. Quadrics are algebraic sets of the second degree in R3.

Remark. Any two quadrics are not identical from the affine point of view, that is, they represent

different affine types.
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9. Projective spaces: real Pn and complex CPn

Definition. (Homogeneous coordinates) λ ∈ R\{0}, x = (x1, . . . , xn) ∈ Rn

Homogeneous coordinates of a point x =
df
{λ, λx1, . . . , λxn}.

Denotation: {x0, x1, . . . , xn}.

Hence for x0 6= 0 we have

{x0, x1, . . . , xn} =

{
1,
x1
x0
, . . . ,

xn
x0

}
=

(
x1
x0
, . . . ,

xn
x0

)
∈ Rn.

If x0 → 0, then the distance of points
(
x1
x0
, . . . , xnx0

)
and (x1, . . . , xn) increases to infinity. Thus

a point {0, x1, . . . , xn} is called a point at infinity. It is easy to see, that

{0, x1, . . . , xn} = K([x1, . . . , xn]),

that is, a point at infinity {0, x1, . . . , xn} is a direction of a vector [x1, . . . , xn] in Rn.

Definition. (n-dimensional projective space Pn)

Pn =
df

Rn ∪ {directions in Rn}.

Directions in Rn are called improper points of a projective space Pn. The space P 1 is called a

projective line, and the space P 2 is called a projective plane.

Definition. (Projective line in Pn)

In P 1 there is exactly one projective line. It is P 1.

If projective lines have already been defined in the space Pn−1, then in the space Pn projective

lines are:

1) lines in Rn together with their improper points (proper lines),

2) sets of points of the form {0, x1, . . . , xn} such that the set of points {x1, . . . , xn} ∈ Pn−1 forms

a projective line in Pn−1 (improper lines).

Remark. The set of improper points of the projective plane P 2 is an improper line.

Remark. A projective line differs from a Cartesian line by an additional point which, in a

sense, closes it, making it similar to a circle with an ”infinitely large” radius.

Theorem. Through every two different points a = {a0, a1, . . . , an}, b = {b0, b1, . . . , bn} ∈ Pn

there passes exactly one projective line consisted of points

x(λ, µ) = {λa0 + µb0, λa1 + µb1, . . . , λan + µbn},
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where (λ, µ) ∈ R2\{(0, 0)}. That is the parametric equation of a projective line.

Proof. We have a 6= b and (λ, µ) 6= (0, 0), whence x(λ, µ) ∈ Pn. Moreover, for α, β 6= 0

x(λ, µ) = {λa0 + µb0, λa1 + µb1, . . . , λan + µbn}

= {λαa0 + µβb0, λαa1 + µβb1, . . . , λαan + µβbn},

that is, any point proportional to a and any point proportional to b determine the same points

x(λ, µ).

We prove by induction with respect to n that points of above form determine a projective line.

For n = 1 it is obvious.

Assume that theorem is true in projective spaces of dimensions lower than n. We have three

cases:

1) a, b – proper points

Assume that a0 = b0 = 1. If λ+ µ 6= 0, then

x(λ, µ) =

(
λ

λ+ µ
a1 +

µ

λ+ µ
b1, . . . ,

λ

λ+ µ
an +

µ

λ+ µ
bn

)
=
λ+ µ− µ
λ+ µ

a+
µ

λ+ µ
b =

(
1− µ

λ+ µ

)
a+

µ

λ+ µ
b.

By theorem on a line a point x(λ, µ) is a proper point of the line. If λ+ µ = 0, then

x(λ, µ) = {λa0 + µb0, λa1 + µb1, . . . , λan + µbn}
λ=−µ

= {0, b1 − a1, . . . , bn − an}

is an improper point of the line.

2) a – proper, b – improper (or vice versa)

Assume that a0 = 1 and b0 = 0. If λ 6= 0, then

x(λ, µ) =
(
a1 +

µ

λ
b1, . . . , an +

µ

λ
bn

)
= a+

µ

λ
(b1, . . . , bn).

So we see that a point x(λ, µ) is a proper point of the line that passes through a and which has

a direction [b1, . . . , bn], that is, an improper point {0, b1, . . . , bn}. If λ = 0, then

x(0, µ) = {0, µb1, . . . , µbn} = b,

that is, it is an improper point of the line.

3) a, b – improper points

Then a0 = b0 = 0 and

x(λ, µ) = {0, λa1 + µb1, . . . , λan + µbn}.
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From assumption, {λa1 + µb1, . . . , λan + µbn} presents a projective line in Pn−1. Hence x(λ, µ)

presents a projective line in Pn.

It is easy to show that numbers λ and µ are determined by the point x(λ, µ) up to a constant

of proportionality. �

Definition. f : Pn → Pn, {x0, x1, . . . , xn} ∈ Pn

f is a projective transformation ⇔
df

f(x0, x1, . . . , xn) = {x0, x1, . . . , xn}, where xj = α0jx0 +

α1jx1 + . . .+ αnjxn for j = 0, 1, . . . , n and a matrix of f :

Af =


α00 α10 . . . αn0

α01 α11 . . . αn1
...

...
. . .

...

α0n α1n . . . αnn


is nonsingular.

Conclusion. A projective transformation is a one-to-one transformation.

Theorem. Composition of two projective transformations is a projective transformation.

Proof. f : Pn → Pn – a projective transformation with a matrix Af , f ′ : Pn → Pn – a

projective transformation with a matrix Af ′

Hence f has the form 
x0

x1
...

xn

 = Af ·


x0

x1
...

xn


and f ′ has the form 

x′0
x′1
...

x′n

 = Af ′ ·


x0

x1
...

xn

 .
Then a transformation f ′f can be written as

x′0
x′1
...

x′n

 = Af ′ ·Af ·


x0

x1
...

xn

 .
Thus Af ′f = Af ′ · Af and it is nonsingular, since Af and Af ′ are nonsingular. Hence a trans-

formation f ′f is projective. �
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Theorem. If f is a projective transformation, then f−1 is a projective transformation.

Proof. f : Pn → Pn – a projective transformation with a matrix Af

So f has the form 
x0

x1
...

xn

 = Af ·


x0

x1
...

xn

 .
That is the system of linear equations with nonsingular coefficient matrix Af . So it has precisely

one solution x0, x1, . . . , xn. Solving that system we get the transformation f−1 of the form
x0

x1
...

xn

 = A−1f ·


x0

x1
...

xn

 .
Hence Af−1 = A−1f and it is nonsingular. Thus f−1 is a projective transformation. �

Definition.

A projective invariant =
df

a property which is unchanged by projective transformations.

Theorem. A projective line is a projective invariant.

Proof. a = {a0, a1, . . . , an}, b = {b0, b1, . . . , bn} ∈ Pn, a 6= b

Let L be a projective line which passes through points a, b. Then

L : x(λ, µ) = {λa0 + µb0, λa1 + µb1, . . . , λan + µbn}, where (λ, µ) 6= (0, 0).

It is easy to see that a point x(λ, µ) of L is transformed by a projective transformation into a

point

{λa0 + µb0, λa1 + µb1, . . . , λan + µbn},

that is, into a point of a projective line which passes through points a = {a0, a1, . . . , an} and

b = {b0, b1, . . . , bn}. �

Definition. f : Pn → Pn – a projective transformation, {x0, x1, . . . , xn}, {x0, x1, . . . , xn} ∈ Pn

A transformation f is an affine transformation ⇔
df
f(x0, x1, . . . , xn) = {x0, x1, . . . , xn}, where{

x0 = x0,

xj = α0jx0 + α1jx1 + . . .+ αnjxn for j = 0, 1, . . . , n.

Conclusion. Under projective affine transformations proper points of Pn go into proper ones,

and improper points into improper ones.
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Remark. A matrix of a projective affine transformation f has the form:

Af =


1 0 . . . 0

α01 α11 . . . αn1
...

...
. . .

...

α0n α1n . . . αnn


and it is nonsingular. If Af is orthogonal, then f is called a projective isometry, and if for λ > 0

a matrix 1
λAf is orthogonal, then f is called a projective similarity with the ratio λ.

Conclusion. Any affine transformation (isometry, similarity) is a projective transformation.

Conclusion. Any projective invariant is an affine invariant (so also a similarity invariant and

an invariant of isometry).

Definition. (Anharmonic ratio)

L – a projective line in Pn, p = {p0, p1, . . . , pn}, q = {q0, q1, . . . , qn} ∈ L, p 6= q

L : x(λ, µ) = {λp0 + µq0, λp1 + µq1, . . . , λpn + µqn}

a, b, c, d ∈ L, {a, b, c, d} = 4, a = x(λa, µa), b = x(λb, µb), c = x(λc, µc), d = x(λd, µd)

An anharmonic ratio of points a, b, c, d is given by

(a, b; c, d) =

∣∣∣∣∣ λa µa

λc µc

∣∣∣∣∣ ·
∣∣∣∣∣ λb µb

λd µd

∣∣∣∣∣∣∣∣∣∣ λa µa

λd µd

∣∣∣∣∣ ·
∣∣∣∣∣ λb µb

λc µc

∣∣∣∣∣
, (a, b; c, d) 6= 0.

If a, b, c, d ∈ Rn, then

(a, b; c, d) = ±ρ(a, c) · ρ(b, d)

ρ(a, d) · ρ(b, c)
.

Theorem. L – a projective line in Pn, a, b, c, d ∈ L, {a, b, c, d} = 4

Then

1) (a, b; c, d) = 1
(a,b;d,c) = 1

(b,a;c,d) = (b, a; d, c),

2) (a, b; c, d) = (c, d; a, b),

3) (a, b; c, d) = 1− (a, c; b, d).

Proof. Follows directly from definition. �

Theorem. An anharmonic ratio is a projective invariant.

Proof. L – a projective line in Pn, p = {p0, p1, . . . , pn}, q = {q0, q1, . . . , qn} ∈ L, p 6= q

L : x(λ, µ) = {λp0 + µq0, . . . , λpn + µqn}, a, b, c, d ∈ L, {a, b, c, d} = 4

Hence a = x(λa, µa), b = x(λb, µb), c = x(λc, µc), d = x(λd, µd).
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Let f : Pn → Pn be a projective transformation such that f(x0, x1, . . . , xn) = {x0, x1, . . . , xn},
where

xj = α0jx0 + α1jx1 + . . .+ αnjxn, j = 0, 1, . . . , n.

It is easy to see that f transforms points a, b, c, d respectively into points

a = {λap0 + µaq0, . . . , λapn + µaqn}

b = {λbp0 + µbq0, . . . , λbpn + µbqn}

c = {λcp0 + µcq0, . . . , λcpn + µcqn}

d = {λdp0 + µdq0, . . . , λdpn + µdqn}

Thus (a, b; c, d) = (a, b; c, d) and proof is finished. �

Definition. L – a projective line in Pn, a, b, c, d ∈ L

A quadruple of points a, b, c, d is called harmonic ⇔
df

(a, b; c, d) = −1.

Then a point d is called the fourth harmonic of points a, b, c. We can also say that pairs a, b and

c, d are harmonic conjugated.

Example. If a, b ∈ Rn, a 6= b, c = a+b
2 and p∞ ∈ L(a, b) ∩ (Pn\Rn), then pairs a, b and

c, p∞ are harmonic conjugated. Indeed, we have a = {1, a1, . . . , an}, b = {1, b1, . . . , bn}, c =

{1, a1+b12 , . . . , an+bn2 } and p∞ = {0, b1 − a1, . . . , bn − an}. Hence

(a, b; c, p∞) =

∣∣∣∣∣ 1 0
1
2

1
2

∣∣∣∣∣ ·
∣∣∣∣∣ 0 1

−1 1

∣∣∣∣∣∣∣∣∣∣ 1 0

−1 1

∣∣∣∣∣ ·
∣∣∣∣∣ 0 1

1
2

1
2

∣∣∣∣∣
=

1
2 · 1

1 · (−1
2)

= −1.

Theorem. If a quadruple (a, b; c, d) is harmonic, then also quadruples (a, b; d, c), (b, a; c, d),

(b, a; d, c) and (c, d; a, b) are harmonic.

Proof. Follows from properties of an anharmonic ratio. �

Theorem. Harmonic quadruple and fourth harmonic are projective invariants.

Proof. Follows from the fact that an anharmonic ratio is a projective invariant. �

Definition. (Projective plane in Pn)

In P 2 there exists exactly one projective plane. It is P 2.

If projective planes have already been defined in the space Pn−1, then in the space Pn projective

planes are:

1) planes in Rn together with their improper points of lines, which lie onto these planes (proper

planes),



91

2) sets of points of the form {0, x1, . . . , xn} such that the set of points {x1, . . . , xn} ∈ Pn−1 forms

a projective plane in Pn−1 (improper planes).

Remark. The set of improper points of a proper plane in Pn is an improper line.

Remark. Similarly, we define a k-dimensional projective hyperplane in Pn.

Remark. The set of improper points of the space Pn is an (n − 1)-dimensional projective

improper hyperplane. Particularly, the set of improper points of P 3 is an improper plane.

Theorem. Any two distinct lines in P 2 have exactly one common point (proper or improper).

Proof. Follows from definition of a projective line. �

Theorem. Any two distinct planes in P 3 have exactly one common line (proper or improper).

Proof. Follows from definition of a projective plane. �

Definition. (Homogeneous polynomial)

ϕ : Rn → R – a polynomial in n variables, ϕ(x) =
∑

i1,...,in

αi1...inx
i1
1 · . . . · xinn , where

x = (x1, . . . , xn) ∈ Rn, i1, . . . , in ∈ {0, . . . , k}, k ∈ N ∪ {0}, deg(ϕ) = k

ϕ is homogeneous ⇔
df

(αi1...in 6= 0 ⇒ i1 + . . .+ in = k).

Example.

1. ϕ(x) = 2x1x2x3 + x1x
2
2 − x33 is the homogeneous polynomial of degree 3 in 3 variables.

2. ϕ(x) = 2x21 + x22 + x1x2 − x1 is the nonhomogeneous polynomial.

Definition. ϕ : Rn → R – a homogeneous polynomial of degree k

An equation ϕ(x) = 0 is called the homogeneous equation of degree k.

Definition. (An algebraic set in Pn)

ϕ : Rn → R – a homogeneous polynomial of degree k, F ⊆ Pn

An algebraic set in Pn of degree k is the set:

F =
df
{{x0, x1, . . . , xn} ∈ Pn : ϕ(x0, x1, . . . , xn) = 0} .

We will write F : ϕ(x) = 0.

Remarks. Similarly as in Rn:

1. Algebraic sets of degree 0 in Pn: ∅ and Pn.

2. Algebraic sets of degree 1 in Pn: (n− 1)-dimensional projective hyperplanes.

3. Algebraic sets of degree k in P 1: k-point sets.

Remark. A homogeneous equation of degree 1 is called a homogeneous linear equation.

Example. The equation ϕ(x) = α0x0+α1x1+ . . .+αnxn = 0 is a homogeneous linear equation.
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Theorem. (A homogeneous linear equation of a line in P 2)

Every line in P 2 has the equation α0x0 + α1x1 + α2x2 = 0, where (α0, α1, α2) 6= (0, 0, 0).

Proof. If α1 = α2 = 0 and α0 6= 0, then the equation α0x0 = 0 describes in P 2 the set of points

of the form {0, x1, x2}, that is, an improper line.

If (α1, α2) 6= (0, 0), then for proper points {1, x1, x2} the equation α0+α1x1+α2x2 = 0 describes

a line in R2. The direction {0, x1, x2} of that line is perpendicular to the vector [α1, α2], that is,

α1x1 + α2x2 = 0. Therefore a line in P 2 always can be described by the above equation. �

Theorem. (A homogeneous linear equation of a plane in P 3)

Every plane in P 3 has the equation α0x0 + α1x1 + α2x2 + α3x3 = 0, where (α0, α1, α2, α3) 6=
(0, 0, 0, 0).

Proof. Similar to the proof of above theorem. �

Theorem. L ⊆ P 2 – a line, a = {a0, a1, a2}, b = {b0, b1, b2} ∈ L, a 6= b

Then

L :

∣∣∣∣∣∣∣
a0 a1 a2

b0 b1 b2

x0 x1 x2

∣∣∣∣∣∣∣ = 0.

Proof. Easy. �

Theorem. P ⊆ P 3 – a plane, a = {a0, a1, a2, a3}, b = {b0, b1, b2, b3}, c = {c0, c1, c2, c3} ∈ P ,

a, b, c do not lie on the same line in P 3

Then

P :

∣∣∣∣∣∣∣∣∣
a0 a1 a2 a3

b0 b1 b2 b3

c0 c1 c2 c3

x0 x1 x2 x3

∣∣∣∣∣∣∣∣∣ = 0.

Proof. Easy. �

Remark. P,Q ⊆ P 3 – planes

Then P ∩ Q = L is a line (proper or improper). If P : α0x0 + α1x1 + α2x2 + α3x3 = 0 and

Q : β0x0 + β1x1 + β2x2 + β3x3 = 0, then

L :

{
α0x0 + α1x1 + α2x2 + α3x3 = 0,

β0x0 + β1x1 + β2x2 + β3x3 = 0.

It is an edge equation of a line L in P 3.

Theorem. An algebraic set in Pn and its degree are projective invariants.
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Proof. Similar to the proof of the fact that an algebraic set in Rn and its degree are affine

invariants. �

Theorem. (On position of a line under an algebraic set of degree k in Pn)

L,F ⊆ Pn, L – a line, F – an algebraic set of degree k

Then

L ⊆ F ∨ 0 ≤ L ∩ F ≤ k.

Proof. Similar to the proof of analogous theorem in Rn. �

Theorem. (On making a polynomial homogeneous)

For every polynomial ϕ : Rn → R of degree k there exists a homogeneous polynomial ψ : Rn+1 →
R of degree k such that

ψ(x0, x1, . . . , xn) = xk0 · ϕ
(
x1
x0
, . . . ,

xn
x0

)
.

Proof. We have ϕ(x1, . . . , xn) =
∑

i1,...,in

αi1...inx
i1
1 · . . . · xinn , where i1 + . . . + in ≤ k for any

i1, . . . , in. Then

ψ(x0, x1, . . . , xn) = xk0 · ϕ
(
x1
x0
, . . . ,

xn
x0

)
=
∑
i1,...,in

αi1...inx
k
0 ·
xi11
xi10
· . . . · x

in
n

xin0

=
∑
i1,...,in

αi1...inx
k−(i1+...+in)
0 · xi11 · . . . · x

in
n .

Let i0 = k − (i1 + . . .+ in). Then

ψ(x0, x1, . . . , xn) =
∑
i1,...,in

αi1...inx
i0
0 · x

i1
1 · . . . · x

in
n

and i0 + i1 + . . .+ in = k, that is, ψ is a homogeneous polynomial. �

Theorem. F : ϕ(x1, . . . , xn) = 0 – an algebraic set of degree k in Rn

Then F ∗ : xk0 · ϕ
(
x1
x0
, . . . , xnx0

)
= 0 is an algebraic set in Pn such that deg(F ∗) ≤ deg(F ) and

F ∗ ∩ Rn = F .

Proof. Obviously deg(F ∗) ≤ deg(F ). Let x0 6= 0. Then

xk0 · ϕ
(
x1
x0
, . . . ,

xn
x0

)
= 0 ⇔ ϕ

(
x1
x0
, . . . ,

xn
x0

)
= 0 ⇔

(
x1
x0
, . . . ,

xn
x0

)
= {x0, x1, . . . , xn} ∈ F.

Hence F ∗ ∩ Rn = F . �

Remark. A set F ∗ is called a complete algebraic set or a completion of a set F .
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Complete conics in P 2:

1. Complete parabola

P ∗ : x22 − 2dx0x1 = 0 − the canonical equation of a complete parabola in P 2.

If x0 = 0, then x22 = 0, that is, x2 = 0. Hence {0, 1, 0} is the only improper point of a parabola

in R2 in canonical position.

Conclusion. A parabola has exactly one improper point.

2. Ellipse

E :
x21
α2
1

+
x22
α2
2

= x20 − the canonical equation of an ellipse in P 2.

If x0 = 0, then x1 = x2 = 0. In the projective space P 2 there is no such point {0, 0, 0}. Hence

there are no improper points satisfying above equation.

Conclusion. An ellipse has no improper points.

3. Complete hyperbola

H∗ :
x21
α2
1

− x22
α2
2

= x20 − the canonical equation of a complete hyperbola in P 2.

If x0 = 0, then
x21
α2
1
− x22

α2
2

= 0, that is, x1 = α1, x2 = α2 or x1 = −α1, x2 = α2. Hence {0, α1, α2}
and {0,−α1, α2} are improper points of a hyperbola in R2 in canonical position.

Conclusion. A hyperbola has exactly two improper points.

Theorem. The number of improper points of an algebraic set is an affine invariant.

Proof. Follows from definition of a projective affine transformation. �

Conclusion. (Affine classification of conics)

There are exactly three affine classes of conics: parabola, ellipse and hyperbola.

Theorem. (Projective classification of conics)

All conics belong to the same projective class.

Proof. It suffices to note that the projective transformation
x0 = −1

2x0 + 1
2x1,

x1 = 1
2x0 + 1

2x1,

x2 = x2
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transforms the complete parabola x22−x0x1 = 0 onto the complete hyperbola x21−x22 = x20, and

the projective transformation 
x0 = x1,

x1 = x2,

x2 = x0

transforms the complete hyperbola x21 − x22 = x20 onto the ellipse x
2
1 + x

2
2 = x

2
0. �

Other algebraic sets of degree 2 in P 2:

1. A 1-point set either has one improper point or does not have any.

2. A union of two proper parallel lines in R2 has exactly one improper point: a direction of

these lines.

3. A union of two proper intersecting lines in R2 has exactly two improper points: directions of

these lines.

4. A union of a proper line and the improper line has infinitely many improper points, which

form the improper line.

Complete quadrics in P 3:

1. Ellipsoid

E :
x21
α2
1

+
x22
α2
2

+
x23
α2
3

= x20 − the canonical equation of an ellipsoid in P 3.

If x0 = 0, then x1 = x2 = x3 = 0. In the projective space P 3 there is no such point {0, 0, 0, 0}.
Hence there are no improper points satisfying above equation.

Conclusion. An ellipsoid has no improper points.

2. Complete hyperboloid of one sheet

H∗1 :
x21
α2
1

+
x22
α2
2

− x23
α2
3

= x20 − the canonical equation of a complete

hyperboloid of one sheet in P 3.

If x0 = 0, then
x21
α2
1

+
x22
α2
2
− x23

α2
3

= 0. This is an equation of some complete conic in the improper

plane.

Conclusion. A hyperboloid of one sheet has infinitely many improper points, which together

form a complete conic in the improper plane.
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3. Complete hyperboloid of two sheets

H∗2 :
x21
α2
1

+
x22
α2
2

− x23
α2
3

= −x20 − the canonical equation of a complete

hyperboloid of two sheets in P 3.

If x0 = 0, then
x21
α2
1

+
x22
α2
2
− x23

α2
3

= 0. This is an equation of some complete conic in the improper

plane.

Conclusion. A hyperboloid of two sheets has infinitely many improper points, which together

form a complete conic in the improper plane.

4. Complete elliptic paraboloid

PE∗ :
x21
α2
1

+
x22
α2
2

= 2x0x3 − the canonical equation of a complete

elliptic paraboloid in P 3.

If x0 = 0, then
x21
α2
1

+
x22
α2
2

= 0, that is, x1 = 0 and x2 = 0. Hence {0, 0, 0, 1} is the only improper

point of an elliptic paraboloid in R3 in canonical position.

Conclusion. An elliptic paraboloid has exactly one improper point.

5. Complete hyperbolic paraboloid

PH∗ :
x21
α2
1

− x22
α2
2

= 2x0x3 − the canonical equation of a complete

hyperbolic paraboloid in P 3.

If x0 = 0, then
x21
α2
1
− x22

α2
2

= 0, that is, x1
α1

= x2
α2

or x1
α1

= − x2
α2

. These are equations of two lines in

the improper plane.

Conclusion. A hyperbolic paraboloid has infinitely many improper points, which together form

two projective lines in the improper plane.

Theorem. (Affine classification of quadrics)

There are exactly five affine classes of quadrics: ellipsoid, hyperboloid of one sheet, hyperboloid

of two sheets, elliptic paraboloid and hyperbolic paraboloid.

Proof. A projective affine transformation P 3 → P 3 transforms the improper plane onto itself.

Hence a set of improper points of a quadric goes onto a set of improper points by such trans-

formation. Thus ellipsoids, hyperboloids, elliptic paraboloids and hyperbolic paraboloids are

not identical from the affine point of view (since they have different sets of improper points).

Moreover a hyperboloid of one sheet and a hyperboloid of two sheets are different from the affine

point of view, because the first one is a ruled set but the second one is not. �
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Theorem. (Projective classification of quadrics)

There are exactly two projective classes of quadrics: to the first class belong ellipsoids, complete

hyperboloids of two sheets and complete elliptic paraboloids; to the second class – complete

hyperboloids of one sheet and complete hyperbolic paraboloids.

Proof. It suffices to remark that the projective transformation
x0 = x3,

x1 = x1,

x2 = x2,

x3 = x0

transforms the ellipsoid x21 +x22 +x23 = x20 onto the complete hyperboloid of two sheets x21 +x22−
x23 = −x20, and the projective transformation

x0 = 1
2x0 + 1

2x3,

x1 = x1,

x2 = x2,

x3 = 1
2x0 −

1
2x3

transforms the complete elliptic paraboloid x21 + x22 = x0x3 onto the ellipsoid x21 + x22 + x23 = x20.

Moreover the projective transformation
x0 = 1

2x0 + 1
2x3,

x1 = x1,

x2 = 1
2x0 −

1
2x3

x3 = x2,

transforms the complete hyperbolic paraboloid x21−x22 = x0x3 onto the complete hyperboloid of

one sheet x21 +x22−x23 = x20. Hence ellipsoids, complete hyperboloids of two sheets and complete

elliptic paraboloids belong to the same projective class, and complete hyperboloids of one sheet

and complete hyperbolic paraboloids also belong to the same projective class. These classes are

different, since hyperboloids of one sheet and hyperboloids of two sheets cannot belong to the

same projective class (the first have rectilinear generators and the second not). �

Remark. The first projective class consists of quadrics which are not ruled sets, and the second

consists of ruled quadrics.

Other algebraic sets of degree 2 in P 3:

1. An elliptic cone

SE :
x21
α2
1

+
x22
α2
2

= x23 − the canonical equation of an elliptic cone in P 3.

If x0 = 0, then
x21
α2
1

+
x22
α2
2

= x23. This is an equation of some complete conic in the improper plane.
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Conclusion. An elliptic cone has infinitely many improper points, which together form a

complete conic in the improper plane.

2. A complete elliptic cylinder

WE∗ :
x21
α2
1

+
x22
α2
2

= x20 − the canonical equation of a complete

elliptic cylinder in P 3.

If x0 = 0, then
x21
α2
1

+
x22
α2
2

= 0, that is, x1 = 0 and x2 = 0. Hence {0, 0, 0, 1} is the only improper

point of an elliptic cylinder in R3 in canonical position.

Conclusion. An elliptic cylinder has exactly one improper point.

3. A complete parabolic cylinder

WP ∗ : x22 = 2dx0x1 − the canonical equation of a complete

parabolic cylinder in P 3.

If x0 = 0, then x2 = 0. This is an equation of a line in the improper plane.

Conclusion. A parabolic cylinder has infinitely many improper points, which together form a

projective line in the improper plane.

4. A complete hyperbolic cylinder

WH∗ :
x21
α2
1

− x22
α2
2

= x20 − the canonical equation of a complete

hyperbolic cylinder in P 3.

If x0 = 0, then
x21
α2
1
− x22

α2
2

= 0, that is, x1
α1

= x2
α2

or x1
α1

= − x2
α2

. These are equations of two lines in

the improper plane.

Conclusion. A hyperbolic cylinder has infinitely many improper points, which together form

two projective lines in the improper plane.

Moreover we have in P 3:

1. A 1-point set either has one improper point or does not have any.

2. A union of two proper parallel planes in R3 has infinitely many improper points, which

together form a projective line in the improper plane.

3. A union of two proper nonparallel planes in R3 has infinitely many improper points, which

together form two projective lines in the improper plane.

4. A union of a proper plane and the improper plane has infinitely many improper points, which

form the improper plane.
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Definition. (Complex n-dimensional Cartesian space)

Cn =
df
{(z1, . . . , zn) : z1, . . . , zn ∈ C}.

Definition. f : Cn → Cn – a transformation

f(z1, . . . , zn) = (z′1, . . . , z
′
n), where z′j = α0j + α1jz1 + . . .+ αnjzn for j = 1, . . . , n

A = [αij ], i, j = 1, . . . , n

A transformation f is called:

1) a real isometry ⇔
df

∧
i,j
αij ∈ R and A is orthogonal,

2) a complex isometry ⇔
df

∧
i,j
αij ∈ C and A is orthogonal,

3) a real similarity with the ratio λ > 0 ⇔
df

∧
i,j
αij ∈ R and 1

λA is orthogonal,

4) a complex similarity with the ratio λ > 0 ⇔
df

∧
i,j
αij ∈ C and 1

λA is orthogonal,

5) a real affine transformation ⇔
df

∧
i,j
αij ∈ R and A is nonsingular,

6) a complex affine transformation ⇔
df

∧
i,j
αij ∈ C and A is nonsingular.

Remark. The following can be extended without change to the complex space Cn:

1) definitions of operations on points of the space and formal rules which apply to these opera-

tions,

2) the notion of a vector as an ordered pair of points,

3) arithmetical definitions of the equality of vectors, a free vector, operations on free vectors, a

linear independence of free vectors,

4) the notions of a parallelism of vectors and their direction,

5) the notion of a perpendicularity of vectors.

Definition. a, b ∈ Cn, a 6= b

A complex line in Cn is defined as a set of points of the form x(t) = (1− t)a+ tb, where t ∈ C.

Remark. Vectors which lie on the one line are parallel, their direction is called the direction of

this line.

Theorem. L ⊆ Cn – a line, a ∈ L, a ‖ L, a 6= 0

Then

L : x(t) = a+ t · (a), where t ∈ C.

Proof. The same like in Rn. �
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Definition. a, b ∈ Cn – linearly independent vectors

A complex plane in Cn is defined as a set of all linear combinations of vectors a and b.

Definition. a1, . . . , ak ∈ Cn – linearly independent vectors

A complex k-dimensional hyperplane in Cn is defined as a set of all linear combinations of

vectors a1, . . . , ak.

Remark. Linear equations of a line in C2, a plane in C3 and (n − 1)-dimensional hyperplane

in Cn can be extended without change.

Remark. The following can be extended without change to complex space Cn:

1) definition of an algebraic set of degree k,

2) the affine invariance of an algebraic set and its degree.

Definition. (Complex n-dimensional projective space)

The complex n-dimensional projective space CPn is defined as a set of all ordered (n + 1)-

tuples {z0, z1, . . . , zn} of complex numbers, not all zero, where proportional systems are always

considered as one and the same point.

Definition.

Proper points in CPn =
df

points of the form {z0, z1, . . . , zn} =
(
z1
z0
, . . . , znz0

)
∈ Cn, where z0 6= 0.

Improper points in CPn =
df

points of the form {0, z1, . . . , zn} ∈ CPn.

Definition. f : CPn
onto−→ CPn, {z0, z1, . . . , zn} ∈ CPn

f is a complex projective transformation ⇔
df

f(z0, z1, . . . , zn) = {z′0, z′1, . . . , z′n}, where z′j =

α0jz0 + α1jz1 + . . .+ αnjzn for j = 0, 1, . . . , n and a matrix of f :

Af =


α00 α10 . . . αn0

α01 α11 . . . αn1
...

...
. . .

...

α0n α1n . . . αnn


is nonsingular.

If all αij ∈ R, then f is called a real projective transformation.

Remark. Directly from definition it is seen that projective transformations are one-to-one.

Remark. Similarly like in Pn every affine transformation (in particular, every isometry) Cn →
Cn can be regarded as a projective transformation CPn → CPn such that the proper points are

transformed onto the proper ones, and the improper points are transformed onto the improper

ones.
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Definition. a = {a0, a1, . . . , an}, b = {b0, b1, . . . , bn} ∈ CPn, a 6= b

A complex projective line in CPn is defined as a set of points of the form x(λ, µ) = {λa0 +

µb0, λa1 + µb1, . . . , λan + µbn}, where (λ, µ) ∈ C2\{(0, 0)}.
Theorem. Through every two different points of CPn there passes exactly one complex pro-

jective line.

Proof. Similar to that in Pn. �

Conclusion. In the space CPn a line that contains two improper points consists of improper

points only (it is an improper line). Every line which contains at least one proper point (that

is, it is a proper line) contains exactly one improper point.

Conclusion. The space CPn can be obtained from the space Cn in a similar way to that in

which the space Pn is obtained from the space Rn.

Conclusion. Any two distinct lines of the plane CP 2 intersect at precisely one point (proper

or improper).

Remark. The concepts of a complex projective plane and a complex projective k-dimensional

hyperplane are defined in CPn similarly like the concepts of a projective plane and a k-

dimensional projective hyperplane in Pn.

Remark. To the space CPn the following can be extended without change:

1) definition of an algebraic set of degree k,

2) the projective invariance of an algebraic set and its degree.

Conclusion. If F : ϕ(x1, . . . , xn) = 0 is an algebraic set of degree k in Cn, then F ∗ :

ψ(x0, x1, . . . , xn) = 0 is a completion of a set F in CPn, where ψ(x0, x1, . . . , xn) = xk0 ·
ϕ
(
x1
x0
, . . . , xnx0

)
is a homogeneous polynomial.

Theorem. (On position of a line under an algebraic set of degree k ≥ 1 in CPn)

L,F ⊆ CPn, L – a line, F – an algebraic set of degree k ≥ 1

Then

L ⊆ F ∨ 1 ≤ L ∩ F ≤ k.

Proof. Similar to the proof of analogous theorem in Rn. �

Theorem. (On completion)

F : ϕ(x1, . . . , xn) = 0 – an algebraic set of degree k in Cn, ψ(x0, x1, . . . , xn) = xk0·ϕ
(
x1
x0
, . . . , xnx0

)
=

0

Then F ∗ : ψ(x0, x1, . . . , xn) = 0 is an algebraic set of degree k in CPn, which is obtained from

F by adding its all improper points.

(without proof)
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10. Algebraic sets of degree ≤ 2 in CPn and Pn

Algebraic sets of degree ≤ 2 in CPn (Pn):

We know that (n−1)-dimensional hyperplanes (proper or improper) are algebraic sets of degree 1

in CPn (Pn).

Now, let us consider algebraic sets of degree 2 in CPn (Pn). Such sets are described by

algebraic equations of degree 2 in which occurs a homogeneous polynomial of degree 2 called a

quadratic form.

Recall that a quadratic form is a function ϕ such that

ϕ(x) =
n∑

i,j=0

αijxixj ,

where αij = αji.

Then

M(ϕ) = [αij ], i, j = 0, 1, . . . , n − the great matrix of a form ϕ,

m(ϕ) = [αij ], i, j = 1, . . . , n − the small matrix of a form ϕ,

∆(ϕ) = det(M(ϕ)) − the great discriminant of a form ϕ,

δ(ϕ) = det(m(ϕ)) − the small discriminant of a form ϕ

and

ϕi(x) =

n∑
j=0

αijxj = αi0x0 + αi1x1 + . . .+ αinxn − the ith derivative polynomial

of a form ϕ for i = 0, 1, . . . , n.

Thus

ϕi(x) =
1

2
ϕ′xi(x) =

1

2

∂ϕ

∂xi
(x) for i = 0, 1, . . . , n,

where ∂ϕ
∂xi

means a partial derivative of ϕ, that is, a derivative of ϕ under a variable xi.

Conclusion. F – an algebraic set of degree ≤ 2 in CPn (Pn)

ϕ – a quadratic form, ϕ(x) =
n∑

i,j=0
αijxixj
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Then

F : ϕ(x) = 0 ⇒ F :
n∑
i=0

ϕi(x) · xi = 0.

Definition. F – an algebraic set of degree ≤ 2 in CPn (Pn), L – a line

We know that L∩F = ∅ ∨ L ⊂ F ∨ L ∩ F = 1 ∨ L ∩ F = 2. If L∩F = {a}, then L is called

the line tangent to F at the point a.

Theorem. A line tangent to an algebraic set of degree ≤ 2 is a projective invariant.

Proof. Follows directly from definition. �

Definition. F – an algebraic set of degree ≤ 2 in CPn (Pn)

An asymptote of F =
df

a line tangent to F at an improper point.

Examples.

1. A parabola has one improper asymptote.

2. An ellipse does not have any asymptotes.

3. A hyperbola has two proper asymptotes.

Theorem. An asymptote of an algebraic set of degree ≤ 2 is an affine invariant.

Proof. Follows directly from definition. �

Definition. F – an algebraic set of degree ≤ 2 in CPn (Pn), a ∈ F

S(a) =
df

a union of all lines tangent to F at a point a.

Remark. We have:

S(a) = CPn ∨ S(a) is an (n− 1)−dimensional hyperplane.

Definition. F – an algebraic set of degree ≤ 2 in CPn (Pn), a ∈ F

a is a singular point of F ⇔
df

S(a) = CPn (Pn),

a is a regular point of F ⇔
df

S(a) = Hn−1.

A singular direction of F =
df

a singular improper point of F .

Examples.

1. A line – every point is singular.

2. A pair of intersecting lines – the intersection point is singular.

3. A pair of parallel lines – the direction of these lines is a singular direction.

4. Conics – lack of singular points.

5. A cone – the vertex is singular.
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6. A cylinder – the direction of a generator is singular.

7. Quadrics – lack of singular points.

Theorem. F : ϕ(x) = 0, a ∈ F

Then

a is singular ⇔ ϕi(a) = 0 for i = 0, . . . , n,

a is regular ⇔
∨

0≤i≤n
ϕi(a) 6= 0,

where ϕi is the ith derivative polynomial of the form ϕ for i = 0, 1, . . . , n.

Proof. F : ϕ(x) =
n∑

i,j=0
αijxixj = 0, αij = αji

a = {a0, a1, . . . , an} ∈ F , b = {x0, x1, . . . , xn} ∈ CPn, a 6= b

Assume that a is singular, that is, every line which passes through a is tangent to F . Take the

line

L(a, b) : x(λ, µ) = {λa0 + µx0, λa1 + µx1, . . . , λan + µxn}, where (λ, µ) 6= (0, 0).

Then the point a satisfies the equation

n∑
i,j=0

αij(λai + µxi)(λaj + µxj) = 0,

which is equivalent to

λ2
n∑

i,j=0

αijaiaj + 2λµ

n∑
i,j=0

αijaixj + µ2
n∑

i,j=0

αijxixj = 0.

This means that there must be
n∑

i,j=0

αijaixj = 0.

The above equation is equivalent to

∂

∂xj

n∑
i,j=0

αijaixj =

n∑
i=0

αijai = ϕj(a) = 0 for j = 0, 1, . . . , n.

Thus a is singular iff ϕi(a) = 0 for i = 0, 1, . . . , n.

The second part follows directly from the first. �

Theorem.

F has at least one singular point ⇔ ∆(ϕ) = 0.

Proof. F : ϕ(x) = 0, ϕ – a quadratic form, a ∈ F

We have
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a is a singular point of F ⇔ ϕi(a) = 0 for i = 0, 1, . . . , n ⇔
n∑
j=0

αijaj = 0 for i = 0, 1, . . . , n ⇔


α00a0 + α01a1 + . . .+ α0nan = 0

α10a0 + α11a1 + . . .+ α1nan = 0
...

αn0a0 + αn1a1 + . . .+ αnnan = 0

⇔ det(M(ϕ)) = ∆(ϕ) = 0. �

Conclusion.

F does not have any singular points ⇔ ∆(ϕ) 6= 0.

Theorem. A singular point of an algebraic set of degree ≤ 2 in CPn (Pn) is a projective

invariant (so also an affine invariant).

Proof. Follows directly from definition. �

Theorem. A singular direction of an algebraic set of degree ≤ 2 in CPn (Pn) is an affine

invariant.

Proof. Follows directly from definition. �

Definition. F – an algebraic set of degree ≤ 2 in CPn (Pn), a ∈ F – a regular point of F

A hyperplane tangent to F at a point a =
df

S(a) = Hn−1.

Definition. F – an algebraic set of degree ≤ 2 in CPn (Pn)

An asymptotic hyperplane of F =
df

a hyperplane tangent to F at an improper point.

Remark. If an improper point of F is also singular (so it is a singular direction), then there

does not exist a hyperplane tangent to F at that point (there does not exist an asymptotic

hyperplane).

Theorem. An asymptotic hyperplane of an algebraic set of degree ≤ 2 in CPn (Pn) is an affine

invariant.

Proof. Follows directly from definition. �

Definition. (Polar) F – an algebraic set of degree ≤ 2 in CPn, F : ϕ(x) =
n∑

i,j=0
αijxixj = 0

a ∈ CPn, a is not a singular point of F

Then

1) a ∈ F (so it is regular)
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We define

B(a) =
df
S(a),

so it is a hyperplane tangent to F at the point a.

Then

B(a) :
n∑

i,j=0

αijaixj = 0.

2) a /∈ F , W – a bundle of all lines in CPn which pass through a

Let L ∈ W. Then 1 ≤ L ∩ F ≤ 2, that is, L∩F = {p, q}, where p = q or p 6= q. From every line

L ∈ W we choose precisely one point x, which will belong to B(a) in the following way:

p = q ⇒ x = p = q,

p 6= q ⇒ x is the fourth harmonic of points

p, q, a, that is, (p, q; a, x) = −1.

Then the analytic formula of B(a) is as follows

B(a) :

n∑
i=0

ϕi(a) · xi = 0

or

B(a) :
n∑
i=0

ϕ′xi(a) · xi = 0.

We call B(a) the polar of the point a with respect to F , and point a – the pole of B(a) with

respect to F .

Remark. Since ϕi(x) =
n∑
j=0

αijxj , so

n∑
i=0

ϕi(a) · xi =
n∑
i=0

 n∑
j=0

αijaj

xi =
n∑
j=0

(
n∑
i=0

αijxi

)
aj =

n∑
j=0

ϕj(x) · aj .

Thus

B(a) :
n∑
i=0

ϕi(x) · ai = 0.

Theorem. A polar of a point a with respect to an algebraic set of degree ≤ 2 in CPn is a

projective invariant.

Proof. Follows directly from definition. �
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Definition. (Diametral hyperplane) F – an algebraic set of degree ≤ 2 in CPn

A diametral hyperplane of F =
df

a polar of an improper point.

If a is an improper point, then B(a) is a diametral hyperplane of F conjugate to the direction a.

Remark. The diametral hyperplane B(a) is not defined when the direction a is singular.

Remark. If the improper point a belongs to F , then a diametral hyperplane of F conjugate to

the direction a is an asymptotic hyperplane.

Theorem. F – an algebraic set of degree ≤ 2 in CPn, a /∈ F , a – improper

Then a diametral hyperplane B(a) passes through centres of strings with direction a:

B(a)
6
a F

•
p′

•
p

•p
′′

Proof. Since a /∈ F , it follows that B(a) is a proper hyperplane. Any line L with direction

a intersects F at at most 2 points p′ and p′′. If p′ 6= p′′, then L intersects B(a) at such point

p that (a, p; p′, p′′) = −1. Since a is improper, it follows that p must be a centre of a segment

〈p′, p′′〉. �

Theorem. A diametral hyperplane of an algebraic set of degree ≤ 2 in CPn is an affine

invariant.

Proof. Follows directly from definition. �

Definition. (A centre of an algebraic set of degree ≤ 2)

F – an algebraic set of degree ≤ 2 in CPn (Pn), a ∈ CPn (Pn)

a is a centre of F ⇔
df

a is a singular point of F or a is a pole of an improper hyperplane.

Conclusion. A centre of an algebraic set of degree ≤ 2 is an affine invariant.

Theorem. F : ϕ(x) =
n∑

i,j=0
αijxixj = 0

Then

a is a centre of F ⇔ ϕi(a) = 0 for i = 1, . . . , n.

Proof. (⇒) If a is singular, then ϕi(a) = 0 for i = 0, 1, . . . , n. So we get a thesis. If a is a pole

of an improper hyperplane, then from the form of the equation of the polar B(a) we get the

thesis.
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(⇐) Assume that ϕi(a) = 0 for i = 1, . . . , n. If ϕ0(a) = 0, then a is singular. If ϕ0(a) 6= 0,

then from the form of the equation of the polar B(a) we get that a is a pole of an improper

hyperplane. �

Theorem. Proper centres of an algebraic set F which belong to F are singular points of F .

Proof. Let F :
n∑
i=0
ϕi(x) · xi = 0, where ϕi is the ith derivative polynomial of the form ϕ for

i = 0, 1, . . . , n. If a = {a0, a1, . . . , an} is a proper centre of F and a ∈ F , then
n∑
i=0
ϕi(a) · ai = 0

and ϕi(a) = 0 for i = 1, . . . , n. Hence ϕ0(a) ·a0 = 0. Since a is proper, a0 6= 0. Hence ϕ0(a) = 0.

Thus ϕi(a) = 0 for i = 0, 1, . . . , n, that is, a is a singular point of F . �

Theorem. A proper centre of F is its centre of symmetry. If F does not contain any improper

hyperplane, then the converse is also true.

Proof. Let F : ϕ(x) =
n∑

i,j=0
αijxixj = 0. Assume that c = {c0, c1, . . . , cn}, where c0 = 1, is a

centre of F . Let a = {a0, a1, . . . , an} and a′ = {a′0, a′1, . . . , a′n} be points symmetric about c,

where a0 = a′0 = 1. Then a′i = 2ci − ai for i = 0, 1, . . . , n. We will show that if a ∈ F , then

a′ ∈ F . We have
n∑

i,j=0

αija
′
ia
′
j =

n∑
i,j=0

αij(2ci − ai)(2cj − aj)

= 4
n∑
j=0

(
n∑
i=0

αijci

)
cj − 4

n∑
j=0

(
n∑
i=0

αijci

)
aj +

n∑
i,j=0

αijaiaj

= 0,

since ϕj(c) =
n∑
i=0
αijci = 0 for j = 1, . . . , n, c0 = a0 = 1 and

n∑
i,j=0

αijaiaj = 0. Thus a′ ∈ F , that

is, c is a centre of symmetry of F .

Now assume that F does not contain an improper hyperplaneH∞ and that c = {c0, c1, . . . , cn},
where c0 = 1, is not a centre of F . We will show that c is not a centre of symmetry of F . Since

H∞ * F , the equation
n∑

i,j=1
αijyiyj = 0 describes in H∞ some algebraic set F ′ of degree 1 or

2. Moreover c is not a centre of F , whence the equation
n∑
j=1

(
n∑
i=1
αijci

)
yj = 0 describes in H∞

some (n − 2)-dimensional hyperplane H ′. Let a ∈ H∞\F ′ and L′ ⊆ H∞ be a line such that

a ∈ L′ and L′ * H ′. We have L′ ∩ F ′ ≤ 2 and L′ ∩H ′ ≤ 1. Hence there is b ∈ (L′\F ′)\H ′. Let

b = {b0, b1, . . . , bn}, where b0 = 0. Thus we have

n∑
i,j=1

αijbibj 6= 0 6=
n∑
j=1

(
n∑
i=0

αijci

)
bj .



109

Take a line L such that c ∈ L and b ‖ L. Hence

L : x(t) = (c0 + tb0, c1 + tb1, . . . , cn + tbn).

The intersection point of L and F we find from the equation

n∑
i,j=0

αij(ci + tbi)(cj + tbj) = 0,

that is,

n∑
i,j=0

αijcicj + 2t
n∑
j=1

(
n∑
i=0

αijci

)
bj + t2

n∑
i,j=1

αijbibj = 0.

The above has two roots t′ and t′′ such that t′ + t′′ 6= 0. Thus L ∩ F = {x(t′), x(t′′)} and x(t′)

and x(t′′) are not symmetric about c, since

x(t′) + x(t′′)

2
=

(
c0, c1 +

t′ + t′′

2
b1, . . . , cn +

t′ + t′′

2
bn

)
6= c.

So c is not a centre of symmetry of F . �

Definition. F – an algebraic set of degree ≤ 2

A special direction of F =
df

an improper centre of F .

Conclusion. A singular direction of an algebraic set of degree ≤ 2 is a special one.

Conclusion. A special direction of an algebraic set of degree ≤ 2 is an affine invariant.

Theorem. Improper centres of an algebraic set F belong to F .

Proof. Let F : ϕ(x) = 0, where ϕ is a quadratic form. Then F :
n∑
i=0
ϕi(x) · xi = 0, where ϕi is

the ith derivative polynomial of the form ϕ for i = 0, 1, . . . , n. Let a = {a0, a1, . . . , an} be an

improper centre of F . Then ϕi(a) = 0 for i = 1, . . . , n. We want to show that
n∑
i=0
ϕi(a) · ai = 0.

We have
n∑
i=0

ϕi(a) · ai = ϕ0(a) · a0 +
n∑
i=1

ϕi(a) · ai.

Since a is improper, we have a0 = 0. Since a is a centre, we also have ϕi(a) = 0 for i = 1, . . . , n.

Hence

ϕ0(a) · a0 +

n∑
i=1

ϕi(a) · ai = ϕ0(a) · 0 +

n∑
i=1

0 · ai = 0.

Thus a ∈ F . �

Theorem. If F : ϕ(x) = 0, then F has at least one special direction ⇔ δ(ϕ) = 0.
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Proof. Let F : ϕ(x) = 0, where ϕ is a quadratic form. Let a = {0, a1, . . . , an}. Then a is a

special direction of F ⇔ ϕi(a) = 0 for i = 1, . . . , n ⇔
n∑
j=0

αijaj = 0 for i = 1, . . . , n ⇔


α11a1 + α12a2 + . . .+ α1nan = 0

α21a1 + α22a2 + . . .+ α2nan = 0
...

αn1a1 + αn2a2 + . . .+ αnnan = 0

⇔

⇔ det(m(ϕ)) = δ(ϕ) = 0. �

Theorem. If F : ϕ(x) = 0, then F has precisely one proper centre ⇔ δ(ϕ) 6= 0.

Proof. Let F : ϕ(x) = 0, where ϕ is a quadratic form. Let a = {a0, a1, . . . , an}, where a0 = 1.

Then a is a proper centre of F ⇔ ϕi(a) = 0 for i = 1, . . . , n ⇔
n∑
j=0

αijaj = 0 for i = 1, . . . , n ⇔


α10 + α11a1 + . . .+ α1nan = 0

α20 + α21a1 + . . .+ α2nan = 0
...

αn0 + αn1a1 + . . .+ αnnan = 0

⇔


α11a1 + . . .+ α1nan = −α10

α21a1 + . . .+ α2nan = −α20

...

αn1a1 + . . .+ αnnan = −αn0

⇔

⇔ det(m(ϕ)) = δ(ϕ) 6= 0. �

Conclusion. Every algebraic set of degree ≤ 2 has at least one centre (proper or improper).

Examples.

1. For an ellipse E : ϕ(x) = α2
2x

2
1 + α2

1x
2
2 − α2

1α
2
2x

2
0 = 0, where α1, α2 > 0 we have

δ(ϕ) =

∣∣∣∣∣ α2
2 0

0 α2
1

∣∣∣∣∣ 6= 0.

Thus an ellipse has precisely one proper centre. Similarly for a hyperbola.

2. For a parabola P ∗ : ϕ(x) = x22 − 2dx0x1 = 0 we have

δ(ϕ) =

∣∣∣∣∣ 0 0

0 1

∣∣∣∣∣ = 0.

So a parabola has at least one improper centre, which must belong to a parabola. Since a

parabola has precisely one improper point, it has precisely one improper centre. Similar situation

occurs for an elliptic paraboloid and a hyperbolic paraboloid.
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Remark. That can be shown similarly for other algebraic sets of degree ≤ 2.

Remark. If an algebraic set of degree ≤ 2 does not have a proper centre (so a centre of

symmetry), then it can have at least one vertex which belongs to the intersection of this set and

its hyperplane of symmetry.

Theorem. If an algebraic set F has a special direction, then the number of centres of symmetry

of F is different from 1.

Proof. Let F : ϕ(x) = 0, where ϕ is a quadratic form. Since F has a special direction, then

δ(ϕ) = 0. Hence it is not true that δ(ϕ) 6= 0, that is, F does not have precisely one centre of

symmetry. �

Theorem. A diametral hyperplane of an algebraic set F contains all centres of F .

Proof. Let F : ϕ(x) = 0, where ϕ is a quadratic form. Let B(a) be a diametral hyperplane

of F , where a = {a0, a1, . . . , an}. Let b be a centre of F . We have B(a) :
n∑
i=0
ϕi(x) · ai = 0 and

ϕi(b) = 0 for i = 1, . . . , n. We want to show that b ∈ B(a), that is,

n∑
i=0

ϕi(b) · ai = 0.

But
n∑
i=0

ϕi(b) · ai = ϕ0(b) · 0 +

n∑
i=1

ϕi(b) · ai = 0,

because ϕi(b) = 0 for i = 1, . . . , n. Thus b ∈ B(a). �

Definition. (Principal direction)

F – an algebraic set of degree ≤ 2 in CPn (Pn), a = {0, a1, . . . , an}

a is a principal direction of F ⇔
df

1) B(a) doesn’t exist ∨ 2) B(a) is improper ∨ 3) B(a)⊥a.

Then:

1) a is a singular direction,

2) a is a special direction,

3) a is called a nonspecial principal direction.

Theorem. (On principal directions) F : ϕ(x) = 0, a = {0, a1, . . . , an}

Then a is a principal direction of F ⇔∨
λ

ϕi(a) = λai, i = 1, . . . , n.

Moreover,

λ = 0 ⇔ a is a special direction,

λ 6= 0 ⇔ a is a nonspecial direction.
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Proof. We know that B(a) :
n∑
i=0
ϕi(a) · xi = 0. If a isn’t a special direction, then not all ϕi(a)

for i = 1, . . . , n are equal to 0, that is, B(a) is proper. Further

B(a)⊥a ⇔
∨
λ

ϕi(a) = λai, i = 1, . . . , n

(that is, ϕi(a) are proportional to ai for i = 1, . . . , n). It is easy to see that

λ = 0 ⇔ a is a special direction, and

λ 6= 0 ⇔ a is a nonspecial direction. �

Conclusion. For every algebraic set of degree 2 there exists at least one principal direction.

Theorem. An (n − 1)-dimensional proper hyperplane perpendicular to a singular direction of

an algebraic set F of degree ≤ 2 is its hyperplane of symmetry (in Pn, CPn).

Proof. Let F :
n∑

i,j=0
αijxixj = 0. Let a = {0, a1, . . . , an} be a singular direction of F , that is,

a is special, so a ∈ F . Let H be an (n − 1)-dimensional proper hyperplane such that a⊥H.

Let b = {b0, b1, . . . , bn}, b′ = {b′0, b′1, . . . , b′n}, where b0 = b′0 = 1, be points symmetric about

H. Assume that b ∈ F , that is,
n∑

i,j=0
αijbibj = 0. We have {0, b1 − b′1, . . . , bn − b′n}⊥H. Hence

bi − b′i = ai for i = 1, . . . , n, that is, b′i = bi − ai. Thus

n∑
i,j=0

αijb
′
ib
′
j =

n∑
i,j=0

αij(bi − ai)(bj − aj) =
n∑

i,j=0

αijbibj − 2
n∑

i,j=0

αijaibj +
n∑

i,j=0

αijaiaj

= 0− 2
n∑

i,j=0

αijaibj + 0 = −2
n∑
j=0

(
n∑
i=0

αijai

)
bj = −2

n∑
j=0

ϕj(a) · bj = 0.

Thus b′ ∈ F . Hence H is a hyperplane of symmetry of F . �

Conclusion. A line perpendicular to a singular direction of an algebraic set of degree ≤ 2 in

P 2 is its axis of symmetry.

Example.
F

��
��1 a singular direction

B
B
B
B
B
B
B
B
B
BB

B
B
B
B
B
B
B
B
B
BB

HHY �
��

axes of symmetry
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Definition. (Principal diametral hyperplane)

A principal diametral hyperplane of a set F =
df

a diametral hyperplane of F conjugate to a

nonspecial principal direction.

Theorem. A principal diametral hyperplane of a set F is a hyperplane of symmetry of F .

Proof. Let F :
n∑

i,j=0
αijxixj = 0. Let a = {a0, a1, . . . , an}, a′ = {a′0, a′1, . . . , a′n}, where a0 =

a′0 = 1, be points symmetric about the principal diametral hyperplane B(b) :
n∑
i=0
ϕi(b) · xi = 0.

Hence b⊥B(b) and {0, a1 − a′1, . . . , an − a′n}⊥B(b). Putting b0 = 0 we can set ai − a′i = bi, that

is, a′i = ai − bi for i = 0, 1, . . . , n. Assume that a ∈ F , that is,
n∑

i,j=0
αijaiaj = 0. Hence

n∑
i,j=0

αija
′
ia
′
j =

n∑
i,j=0

αij(ai − bi)(aj − bj) =
n∑

i,j=0

αijaiaj − 2
n∑

i,j=0

αijaibj +
n∑

i,j=0

αijbibj

= 0 +
n∑

i,j=0

αij(bi − 2ai)bj =
n∑
i=0

 n∑
j=0

αijbj

 (bi − 2ai) =
n∑
i=0

ϕi(b)(ai − a′i − 2ai)

= −
n∑
i=0

ϕi(b)(ai + a′i) = 0,

since

{a0 + a′0, a1 + a′1, . . . , an + a′n} =

{
1,
a1 + a′1

2
, . . . ,

an + a′n
2

}
∈ B(b)

(as the centre of the segment 〈a, a′〉).
Hence a′ ∈ F . Thus B(b) is the hyperplane of symmetry of F . �

Definition.

The equation
n∑

i,j=0
αijxixj = 0 has a canonical form of the first kind ⇔

df
it has the form

k∑
i=0

αix
2
i = 0, where αi = αii 6= 0 for i = 1, . . . , k and some k = 0, 1, . . . , n.

Remark. The canonical equations of an ellipse, a hyperbola, an ellipsoid, a hyperboloid of one

sheet, a hyperboloid of two sheets, an elliptic cylinder, a hyperbolic cylinder and a cone have a

canonical form of the first kind.
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Definition.

The equation
n∑

i,j=0
αijxixj = 0 has a canonical form of the second kind ⇔

df
it has the form

k∑
i=1

αix
2
i + 2x0xn = 0, where αi = αii 6= 0 for i = 1, . . . , k and some k = 0, 1, . . . , n− 1

(instead of xn there can be any other unknown which is not squared).

Remark. The canonical equations of a parabola, a parabolic cylinder, an elliptic paraboloid

and a hyperbolic paraboloid have a canonical form of the second kind.

Definition. F :
n∑

i,j=0
αijxixj = 0 – an algebraic set of degree ≤ 2 in Cn (CPn)

The set F is called real ⇔
df

αij ∈ R for every i, j = 0, 1, . . . , n.

Theorem. (On reduction)

For every algebraic set F :
n∑

i,j=0
αijxixj = 0 in CPn there exists an affine transformation f which

transforms the set F onto a set defined by an equation in a canonical form. The canonical form

is of the first kind if the set F has at least one proper centre, and it is of the second kind if the

set F does not have any proper centre. If the set F is real, then it is always possible to choose

a real isometry for the transformation f .

(without proof)

F : ϕ(x) = 0 – an algebraic set of degree ≤ 2 in CPn (Pn)

Take

K(F ) =
df
r(M(ϕ)) − the number of nonzero eigenvalues of M(ϕ),

k(F ) =
df
r(m(ϕ)) − the number of nonzero eigenvalues of m(ϕ),

L(F ) =
df

the absolute value of the difference of numbers

of positive and negative eigenvalues of M(ϕ),

l(F ) =
df

the absolute value of the difference of numbers

of positive and negative eigenvalues of m(ϕ).
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Theorem.

1. Two algebraic sets F and F ′ of degree ≤ 2 in CPn are identical from the projective point of

view ⇔ K(F ) = K(F ′).

2. Two real algebraic sets F and F ′ of degree ≤ 2 in CPn are identical from the projective point

of view ⇔ K(F ) = K(F ′) and L(F ) = L(F ′).

(without proof)

Conclusion. In CPn there exists precisely 1 projective class of algebraic sets of degree 2 without

singular points.

Conclusion. In CPn there exist precisely n projective classes of all algebraic sets of degree 2.

Conclusion. In CPn there exist precisely E
(
n+3
2

)
projective classes of real algebraic sets of

degree 2 without singular points1.

Conclusion. In CPn there exist precisely
n∑
k=1

E
(
k+3
2

)
projective classes of all real algebraic

sets of degree 2.

Conclusions.

1. In CP 2 there exist 2 projective classes of real algebraic sets of degree 2 without singular points:

conics and algebraic sets without real points; and 4 projective classes of all real algebraic sets

of degree 2: conics, algebraic sets without real points, pairs of real lines and pairs of imaginary

lines which intersect at a real point.

2. In P 2 there exists 1 projective class of real algebraic sets of degree 2 without singular points:

conics; and 2 projective classes of all real algebraic sets of degree 2: conics and pairs of real

lines.

3. In CP 3 there exist 3 projective classes of real algebraic sets of degree 2 without singular points:

quadrics which are ruled sets, quadrics which are not ruled sets and algebraic sets without real

points; and 7 projective classes of all real algebraic sets of degree 2.

4. In P 3 there exist 2 projective classes of real algebraic sets of degree 2 without singular points:

quadrics which are ruled sets and quadrics which are not ruled sets; and 5 projective classes of

all real algebraic sets of degree 2: quadrics which are ruled sets, quadrics which are not ruled

sets, cones, cylinders and pairs of real planes.

Theorem.

1. Two algebraic sets F and F ′ of degree ≤ 2 in CPn are identical from the affine point of view

⇔ K(F ) = K(F ′) and k(F ) = k(F ′).

2. Two real algebraic sets F and F ′ of degree ≤ 2 in CPn are identical from the affine point of

view ⇔ K(F ) = K(F ′), L(F ) = L(F ′), k(F ) = k(F ′) and l(F ) = l(F ′).

(without proof)

1For x ∈ R, the symbol E(x) means the integer k such that k ≤ x < k + 1.
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Conclusion. In CPn there exist precisely 2 affine classes of algebraic sets of degree 2 without

singular points.

Conclusion. In CPn there exist precisely 3n− 1 affine classes of all algebraic sets of degree 2.

Conclusion. In CPn there exist precisely n + E
(
n+1
2

)
+ 1 affine classes of real algebraic sets

of degree 2 without singular points.

Conclusion. In CPn there exist precisely n2 + 3n− 1 affine classes of all real algebraic sets of

degree 2.

Affine classification of real algebraic sets of degree ≤ 2 in P 2:

Affine class Improper points Singular points Centres

Ellipse 0 0 1 proper

Hyperbola 2 0 1 proper

Parabola 1 0 1 improper

Pair of proper
2 1 proper 1 proper

intersecting lines

Pair of proper
1 1 improper proper line

parallel lines

Proper line +
improper line 1 improper 1 improper

improper line

Proper line 1 proper line proper line

Improper line improper line improper line improper line

Remark. As we see, in P 2 there are 3 affine classes of algebraic sets of degree 2 without singular

points. We know that in CP 2 there are n+E
(
n+1
2

)
+ 1 = 4 such classes: we additionally have

imaginary algebraic set without singular points.

Remark. In P 2 there are 6 affine classes of all algebraic sets of degree 2. We know that in CP 2

there are n2 + 3n − 1 = 9 such classes: we additionally have imaginary algebraic set without

singular points, pair of imaginary lines which intersect at a real proper point and pair of parallel

imaginary lines.
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Affine classification of real algebraic sets of degree ≤ 2 in P 3:

Affine class Improper points Singular points Centres Remarks

Ellipsoid 0 0 1 proper nonruled set

Hyperboloid
conic 0 1 proper ruled set

of one sheet

Hyperboloid
conic 0 1 proper nonruled set

of two sheets

Elliptic
1 0 1 improper nonruled set

paraboloid

Hyperbolic
two lines 0 1 improper ruled set

paraboloid

Cone conic 1 proper 1 proper ruled set

Elliptic cylinder 1 1 improper proper line ruled set

Parabolic cylinder one line 1 improper improper line ruled set

Hyperbolic cylinder two lines 1 improper proper line ruled set

Pair of proper
two lines proper line proper line ruled set

nonparallel planes

Pair of proper
one line improper line proper plane ruled set

parallel planes

Proper plane +
improper plane improper line improper line ruled set

improper plane

Proper line 1 proper line proper line ruled set

Improper line improper line improper line improper line ruled set

Proper plane one line proper plane proper plane ruled set

Improper plane improper plane improper plane improper plane ruled set

Remark. As we see, in P 3 there are 5 affine classes of algebraic sets of degree 2 without singular

points. We know that in CP 3 there are n+E
(
n+1
2

)
+ 1 = 6 such classes: we additionally have

imaginary algebraic set without singular points.

Remark. In P 3 there are 14 affine classes of all algebraic sets of degree 2. We know that

in CP 3 there are n2 + 3n − 1 = 17 such classes: we additionally have imaginary algebraic set

without singular points, pair of imaginary planes which intersect at a real proper line and pair

of parallel imaginary planes.

Conclusion. (method of finding principal directions, hyperplanes of symmetry and

a canonical equation of an algebraic set of degree 2)

F : ϕ(x) = 0 in P 2 or P 3

1. We determine eigenvalues λi and eigenvectors ai of the matrix m(ϕ).
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2. If λi = 0, then ai is a special direction of F ; and if λi 6= 0, then ai is a nonspecial principal

direction of F .

3. A hyperplane of symmetry of F = a principal diametral hyperplane (conjugate to a nonspecial

principal direction). The intersection of a hyperplane of symmetry of F and the set F is equal

to a set of vertices of F (if F has vertices).

4. Taking a proper centre (or a vertex) of F and principal directions of F (if necessary we

can add the third direction perpendicular to two directions which we have) we construct an

appropriate isometry. After putting to the equation of F we obtain a canonical equation.

Example 1. Classify the algebraic set F : 2x21 + x22− 4x1x2 + 2x2− 1 = 0 in R2 from the affine

point of view.

Solution. We determine improper points and singular points of F and answer the question.

First, we complete the set F :

F ∗ : ϕ(x) = 2x21 + x22 − 4x1x2 + 2x0x2 − x20 = 0 in P 2.

Improper points:

We have to solve the following system (since improper points have the 0-coordinate x0 = 0):{
x0 = 0

2x21 − 4x1x2 + x22 = 0
,

that is,

(4x21 − 4x1x2 + x22)− 2x21 = 0

(2x1 − x2)2 − 2x21 = 0(
2x1 − x2 −

√
2x1

)(
2x1 − x2 +

√
2x1

)
= 0

x2 =
(

2−
√

2
)
x1 ∨ x2 =

(
2 +
√

2
)
x1.

Hence the set F has two improper points:
{

0, x1,
(
2−
√

2
)
x1
}

=
{

0, 1, 2−
√

2
}

and{
0, x1,

(
2 +
√

2
)
x1
}

=
{

0, 1, 2 +
√

2
}

.

Singular points:

M(ϕ) =

 −1 0 1

0 2 −2

1 −2 1

 and ∆(ϕ) =

∣∣∣∣∣∣∣
−1 0 1

0 2 −2

1 −2 1

∣∣∣∣∣∣∣ = −2− 2 + 4 = 0.
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Now, we know that F has at least one singular point⇔ ∆(ϕ) = 0. Hence F has singular points.

We know that a point a is singular ⇔ ϕi(a) = 0 for i = 0, 1, 2. We have:

ϕ0(x) = −x0 + x2

ϕ1(x) = 2x1 − 2x2

ϕ2(x) = x0 − 2x1 + x2

(coefficients of the above are elements of rows of M(ϕ))

and 
−x0 + x2 = 0

2x1 − 2x2 = 0

x0 − 2x1 + x2 = 0

,

whence {
x0 = x2

x1 = x2
.

The set F has one singular point: {x2, x2, x2} = {1, 1, 1}.

Thus F is a pair of intersecting lines. �

Example 2. Classify the algebraic set F : 4x21− x22− 2x23− 16x1 + 15 = 0 in R3 from the affine

point of view.

Solution. We complete the set F :

F ∗ : ϕ(x) = 4x21 − x22 − 2x23 − 16x0x1 + 15x20 = 0 in P 3.

Improper points: {
x0 = 0

4x21 − x22 − 2x23 = 0
.

That is the equation of some conic in the improper plane.

Singular points:

M(ϕ) =


15 −8 0 0

−8 4 0 0

0 0 −1 0

0 0 0 −2

 and ∆(ϕ) =

∣∣∣∣∣∣∣∣∣
15 −8 0 0

−8 4 0 0

0 0 −1 0

0 0 0 −2

∣∣∣∣∣∣∣∣∣ = −8 6= 0.

Hence F does not have singular points. Thus F is a hyperboloid (we don’t know which one, to

find out we can check if it is a ruled set or we can find its canonical equation, see Example 4).

�

Example 3. Classify the algebraic set F : x21 + x22 + x23 + 2x1x3− 2x1 + 4x2 + 4 = 0 in R3 from

the affine point of view.
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Solution. We complete the set F :

F ∗ : ϕ(x) = x21 + x22 + x23 + 2x1x3 − 2x0x1 + 4x0x2 + 4x20 = 0 in P 3.

Improper points: {
x0 = 0

x21 + x22 + x23 + 2x1x3 = 0
,

that is,

x22 + (x1 + x3)
2 = 0

x2 = 0 ∧ x1 + x3 = 0

x2 = 0 ∧ x3 = −x1.

Hence the set F has one improper point: {0, x1, 0,−x1} = {0, 1, 0,−1}.

Singular points:

M(ϕ) =


4 −1 2 0

−1 1 0 1

2 0 1 0

0 1 0 1

 and ∆(ϕ) =

∣∣∣∣∣∣∣∣∣
4 −1 2 0

−1 1 0 1

2 0 1 0

0 1 0 1

∣∣∣∣∣∣∣∣∣ = −1 6= 0.

Hence F does not have singular points. Thus F is an elliptic paraboloid. �

Example 4. Find the centre and principal directions of the algebraic set F : 4x21 − x22 − 2x23 −
16x1 + 15 = 0 in R3. Determine a canonical equation of F .

Solution. We see that F is the hyperboloid from Example 2. We have:

F ∗ : ϕ(x) = 4x21 − x22 − 2x23 − 16x0x1 + 15x20 = 0 in P 3,

M(ϕ) =


15 −8 0 0

−8 4 0 0

0 0 −1 0

0 0 0 −2

 and m(ϕ) =

 4 0 0

0 −1 0

0 0 −2

 .

The centre:

We know that F has precisely one proper centre⇔ δ(ϕ) 6= 0; and that F has at least one special

direction (that is, an improper centre) ⇔ δ(ϕ) = 0. We have

δ(ϕ) = det(m(ϕ)) = 8 6= 0.
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Hence the set F has precisely one proper centre. We know that a point a is a centre⇔ ϕi(a) = 0

for i = 1, 2, 3. We have:

ϕ1(x) = −8x0 + 4x1

ϕ2(x) = −x2
ϕ3(x) = −2x3

and 
−8x0 + 4x1 = 0

−x2 = 0

−2x3 = 0

,

whence 
x1 = 2x0

x2 = 0

x3 = 0

.

Thus the point {x0, 2x0, 0, 0} = {1, 2, 0, 0} is the proper centre of F with Cartesian coordinates:

(2, 0, 0).

Principal directions:

We know that eigenvectors of m(ϕ) are principal directions of F . We have eigenvalues of m(ϕ):

λ1 = 4, λ2 = −1 and λ3 = −2 and, respectively, eigenvectors of m(ϕ): {0, x1, 0, 0} = {0, 1, 0, 0},
{0, 0, x2, 0} = {0, 0, 1, 0} and {0, 0, 0, x3} = {0, 0, 0, 1}. Hence these are nonspecial principal

directions.

A canonical equation of F :

We have the centre a = (2, 0, 0) and principal directions a1 = [1, 0, 0], a2 = [0, 1, 0] and a3 =

[0, 0, 1]. In order to find a canonical equation of F we have to write an isometry. We need a

centre or a vertex of F and three versors. We have a centre and three versors, so the isometry

has the form:

(x1, x2, x3) = a+ a1x1 + a2x2 + a3x3

= (2, 0, 0) + [1, 0, 0]x1 + [0, 1, 0]x2 + [0, 0, 1]x3,

that is, 
x1 = 2 + x1

x2 = x2

x3 = x3

.

Setting the above to the equation of F we obtain the following canonical equation of F :

x22
1

+
x23
1
2

− x21
1
4

= −1.

Thus F is a hyperboloid of two sheets. �
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Example 5. Find the centre and principal directions of the algebraic set F : x23−3x1−4x2−5 = 0

in R3. Determine a canonical equation of F .

Solution. We complete the set F :

F ∗ : ϕ(x) = x23 − 3x0x1 − 4x0x2 − 5x20 = 0 in P 3.

So

ϕ(x) = 2x23 − 6x0x1 − 8x0x2 − 10x20 = 0,

M(ϕ) =


−10 −3 −4 0

−3 0 0 0

−4 0 0 0

0 0 0 2

 and m(ϕ) =

 0 0 0

0 0 0

0 0 2

 .
The centre:

δ(ϕ) = det(m(ϕ)) = 0.

Hence the set F has special directions, that is, improper centres:

ϕ1(x) = −3x0

ϕ2(x) = −4x0

ϕ3(x) = 2x3

and 
−3x0 = 0

−4x0 = 0

2x3 = 0

,

whence {
x0 = 0

x3 = 0
.

That is the improper line which contains all improper centres of F . Moreover the set F does

not have a proper centre, so it can have a vertex.

Principal directions:

Eigenvalues of m(ϕ): λ1 = 0 and λ2 = 2. For λ1 = 0 we have already determined special

(principal) directions (improper centres) of F . For λ2 = 2 we have the nonspecial principal

direction: {0, 0, 0, x3} = {0, 0, 0, 1}.
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The vertex:

The vertex is the intersection of F and a principal diametral hyperplane, that is, a diametral

hyperplane conjugate to a nonspecial principal direction a = {0, 0, 0, 1}. We have

ϕ0(x) = −10x0 − 3x1 − 4x2

ϕ1(x) = −3x0

ϕ2(x) = −4x0

ϕ3(x) = 2x3

and

ϕ0(a) = 0

ϕ1(a) = 0

ϕ2(a) = 0

ϕ3(a) = 2

.

Since the polar of the point a with respect to F has an equation

B(a) :
n∑
i=0

ϕi(a) · xi = 0,

we get

B(a) : 2x3 = 0,

that is,

B(a) : x3 = 0.

That is the principal diametral plane of F , that is, the plane of symmetry of F . The intersection

of F and B(a): {
x23 − 3x1 − 4x2 − 5 = 0

x3 = 0
,

that is, {
−3x1 − 4x2 − 5 = 0

x3 = 0
.

That is the line which contains all vertices of F . We choose one, for example, b = (1,−2, 0).

A canonical equation of F :

In order to find a canonical equation of F yet we need three perpendicular versors associated

with F . We have the first:

a1 = [0, 0, 1].



124

As the second we take a singular direction of F . We have to solve the system:
ϕ0(x) = −10x0 − 3x1 − 4x2 = 0

ϕ1(x) = −3x0 = 0

ϕ2(x) = −4x0 = 0

ϕ3(x) = 2x3 = 0

,

that is, 
x0 = 0

x3 = 0

x1 = −4
3x2

.

Hence
{

0,−4
3x2, x2, 0

}
= {0,−4, 3, 0} is the singular direction of F . So we have the vector

[−4, 3, 0] and the second versor:

a2 =
[−4, 3, 0]

|[−4, 3, 0]|
=

[
−4

5
,
3

5
, 0

]
.

As the third versor we take:

a1 × a2 =

∣∣∣∣∣∣∣
i j k

0 0 1

−4
5

3
5 0

∣∣∣∣∣∣∣ =

[
−3

5
,−4

5
, 0

]
‖
[

3

5
,
4

5
, 0

]
= a3.

Hence the isometry has the form:

(x1, x2, x3) = b+ a1x1 + a2x2 + a3x3

= (1,−2, 0) + [0, 0, 1]x1 +

[
−4

5
,
3

5
, 0

]
x2 +

[
3

5
,
4

5
, 0

]
x3,

that is, 
x1 = 1− 4

5x2 + 3
5x3

x2 = −2 + 3
5x2 + 4

5x3

x3 = x1

.

Setting the above to the equation of F we obtain the following canonical equation of F :

x21 − 5x3 = 0.

Thus F is a parabolic cylinder. �
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